| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elwwlks2on.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | eqid | ⊢ ( Edg ‘ 𝐺 )  =  ( Edg ‘ 𝐺 ) | 
						
							| 3 | 1 2 | umgrwwlks2on | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  →  ( 〈“ 𝐴 𝐵 𝐶 ”〉  ∈  ( 𝐴 ( 2  WWalksNOn  𝐺 ) 𝐶 )  ↔  ( { 𝐴 ,  𝐵 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝐵 ,  𝐶 }  ∈  ( Edg ‘ 𝐺 ) ) ) ) | 
						
							| 4 |  | 3anrev | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 )  ↔  ( 𝐶  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐴  ∈  𝑉 ) ) | 
						
							| 5 | 1 2 | umgrwwlks2on | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  ( 𝐶  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐴  ∈  𝑉 ) )  →  ( 〈“ 𝐶 𝐵 𝐴 ”〉  ∈  ( 𝐶 ( 2  WWalksNOn  𝐺 ) 𝐴 )  ↔  ( { 𝐶 ,  𝐵 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝐵 ,  𝐴 }  ∈  ( Edg ‘ 𝐺 ) ) ) ) | 
						
							| 6 | 4 5 | sylan2b | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  →  ( 〈“ 𝐶 𝐵 𝐴 ”〉  ∈  ( 𝐶 ( 2  WWalksNOn  𝐺 ) 𝐴 )  ↔  ( { 𝐶 ,  𝐵 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝐵 ,  𝐴 }  ∈  ( Edg ‘ 𝐺 ) ) ) ) | 
						
							| 7 |  | prcom | ⊢ { 𝐶 ,  𝐵 }  =  { 𝐵 ,  𝐶 } | 
						
							| 8 | 7 | eleq1i | ⊢ ( { 𝐶 ,  𝐵 }  ∈  ( Edg ‘ 𝐺 )  ↔  { 𝐵 ,  𝐶 }  ∈  ( Edg ‘ 𝐺 ) ) | 
						
							| 9 |  | prcom | ⊢ { 𝐵 ,  𝐴 }  =  { 𝐴 ,  𝐵 } | 
						
							| 10 | 9 | eleq1i | ⊢ ( { 𝐵 ,  𝐴 }  ∈  ( Edg ‘ 𝐺 )  ↔  { 𝐴 ,  𝐵 }  ∈  ( Edg ‘ 𝐺 ) ) | 
						
							| 11 | 8 10 | anbi12ci | ⊢ ( ( { 𝐶 ,  𝐵 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝐵 ,  𝐴 }  ∈  ( Edg ‘ 𝐺 ) )  ↔  ( { 𝐴 ,  𝐵 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝐵 ,  𝐶 }  ∈  ( Edg ‘ 𝐺 ) ) ) | 
						
							| 12 | 6 11 | bitr2di | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  →  ( ( { 𝐴 ,  𝐵 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝐵 ,  𝐶 }  ∈  ( Edg ‘ 𝐺 ) )  ↔  〈“ 𝐶 𝐵 𝐴 ”〉  ∈  ( 𝐶 ( 2  WWalksNOn  𝐺 ) 𝐴 ) ) ) | 
						
							| 13 | 3 12 | bitrd | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  →  ( 〈“ 𝐴 𝐵 𝐶 ”〉  ∈  ( 𝐴 ( 2  WWalksNOn  𝐺 ) 𝐶 )  ↔  〈“ 𝐶 𝐵 𝐴 ”〉  ∈  ( 𝐶 ( 2  WWalksNOn  𝐺 ) 𝐴 ) ) ) |