| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq2 | ⊢ ( 𝑏  =  𝑐  →  ( 𝐴 ( 2  WSPathsNOn  𝐺 ) 𝑏 )  =  ( 𝐴 ( 2  WSPathsNOn  𝐺 ) 𝑐 ) ) | 
						
							| 2 |  | wspthneq1eq2 | ⊢ ( ( 𝑡  ∈  ( 𝐴 ( 2  WSPathsNOn  𝐺 ) 𝑏 )  ∧  𝑡  ∈  ( 𝐴 ( 2  WSPathsNOn  𝐺 ) 𝑐 ) )  →  ( 𝐴  =  𝐴  ∧  𝑏  =  𝑐 ) ) | 
						
							| 3 | 2 | simprd | ⊢ ( ( 𝑡  ∈  ( 𝐴 ( 2  WSPathsNOn  𝐺 ) 𝑏 )  ∧  𝑡  ∈  ( 𝐴 ( 2  WSPathsNOn  𝐺 ) 𝑐 ) )  →  𝑏  =  𝑐 ) | 
						
							| 4 | 3 | 3adant1 | ⊢ ( ( ⊤  ∧  𝑡  ∈  ( 𝐴 ( 2  WSPathsNOn  𝐺 ) 𝑏 )  ∧  𝑡  ∈  ( 𝐴 ( 2  WSPathsNOn  𝐺 ) 𝑐 ) )  →  𝑏  =  𝑐 ) | 
						
							| 5 | 1 4 | disjord | ⊢ ( ⊤  →  Disj  𝑏  ∈  ( 𝑉  ∖  { 𝐴 } ) ( 𝐴 ( 2  WSPathsNOn  𝐺 ) 𝑏 ) ) | 
						
							| 6 | 5 | mptru | ⊢ Disj  𝑏  ∈  ( 𝑉  ∖  { 𝐴 } ) ( 𝐴 ( 2  WSPathsNOn  𝐺 ) 𝑏 ) |