| Step | Hyp | Ref | Expression | 
						
							| 1 |  | disjord.1 | ⊢ ( 𝑎  =  𝑏  →  𝐴  =  𝐵 ) | 
						
							| 2 |  | disjord.2 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴  ∧  𝑥  ∈  𝐵 )  →  𝑎  =  𝑏 ) | 
						
							| 3 |  | orc | ⊢ ( 𝑎  =  𝑏  →  ( 𝑎  =  𝑏  ∨  ( 𝐴  ∩  𝐵 )  =  ∅ ) ) | 
						
							| 4 | 3 | a1d | ⊢ ( 𝑎  =  𝑏  →  ( 𝜑  →  ( 𝑎  =  𝑏  ∨  ( 𝐴  ∩  𝐵 )  =  ∅ ) ) ) | 
						
							| 5 | 2 | 3expia | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( 𝑥  ∈  𝐵  →  𝑎  =  𝑏 ) ) | 
						
							| 6 | 5 | con3d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ¬  𝑎  =  𝑏  →  ¬  𝑥  ∈  𝐵 ) ) | 
						
							| 7 | 6 | impancom | ⊢ ( ( 𝜑  ∧  ¬  𝑎  =  𝑏 )  →  ( 𝑥  ∈  𝐴  →  ¬  𝑥  ∈  𝐵 ) ) | 
						
							| 8 | 7 | ralrimiv | ⊢ ( ( 𝜑  ∧  ¬  𝑎  =  𝑏 )  →  ∀ 𝑥  ∈  𝐴 ¬  𝑥  ∈  𝐵 ) | 
						
							| 9 |  | disj | ⊢ ( ( 𝐴  ∩  𝐵 )  =  ∅  ↔  ∀ 𝑥  ∈  𝐴 ¬  𝑥  ∈  𝐵 ) | 
						
							| 10 | 8 9 | sylibr | ⊢ ( ( 𝜑  ∧  ¬  𝑎  =  𝑏 )  →  ( 𝐴  ∩  𝐵 )  =  ∅ ) | 
						
							| 11 | 10 | olcd | ⊢ ( ( 𝜑  ∧  ¬  𝑎  =  𝑏 )  →  ( 𝑎  =  𝑏  ∨  ( 𝐴  ∩  𝐵 )  =  ∅ ) ) | 
						
							| 12 | 11 | expcom | ⊢ ( ¬  𝑎  =  𝑏  →  ( 𝜑  →  ( 𝑎  =  𝑏  ∨  ( 𝐴  ∩  𝐵 )  =  ∅ ) ) ) | 
						
							| 13 | 4 12 | pm2.61i | ⊢ ( 𝜑  →  ( 𝑎  =  𝑏  ∨  ( 𝐴  ∩  𝐵 )  =  ∅ ) ) | 
						
							| 14 | 13 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  →  ( 𝑎  =  𝑏  ∨  ( 𝐴  ∩  𝐵 )  =  ∅ ) ) | 
						
							| 15 | 14 | ralrimivva | ⊢ ( 𝜑  →  ∀ 𝑎  ∈  𝑉 ∀ 𝑏  ∈  𝑉 ( 𝑎  =  𝑏  ∨  ( 𝐴  ∩  𝐵 )  =  ∅ ) ) | 
						
							| 16 | 1 | disjor | ⊢ ( Disj  𝑎  ∈  𝑉 𝐴  ↔  ∀ 𝑎  ∈  𝑉 ∀ 𝑏  ∈  𝑉 ( 𝑎  =  𝑏  ∨  ( 𝐴  ∩  𝐵 )  =  ∅ ) ) | 
						
							| 17 | 15 16 | sylibr | ⊢ ( 𝜑  →  Disj  𝑎  ∈  𝑉 𝐴 ) |