Metamath Proof Explorer


Theorem disjord

Description: Conditions for a collection of sets A ( a ) for a e. V to be disjoint. (Contributed by AV, 9-Jan-2022)

Ref Expression
Hypotheses disjord.1 ( 𝑎 = 𝑏𝐴 = 𝐵 )
disjord.2 ( ( 𝜑𝑥𝐴𝑥𝐵 ) → 𝑎 = 𝑏 )
Assertion disjord ( 𝜑Disj 𝑎𝑉 𝐴 )

Proof

Step Hyp Ref Expression
1 disjord.1 ( 𝑎 = 𝑏𝐴 = 𝐵 )
2 disjord.2 ( ( 𝜑𝑥𝐴𝑥𝐵 ) → 𝑎 = 𝑏 )
3 orc ( 𝑎 = 𝑏 → ( 𝑎 = 𝑏 ∨ ( 𝐴𝐵 ) = ∅ ) )
4 3 a1d ( 𝑎 = 𝑏 → ( 𝜑 → ( 𝑎 = 𝑏 ∨ ( 𝐴𝐵 ) = ∅ ) ) )
5 2 3expia ( ( 𝜑𝑥𝐴 ) → ( 𝑥𝐵𝑎 = 𝑏 ) )
6 5 con3d ( ( 𝜑𝑥𝐴 ) → ( ¬ 𝑎 = 𝑏 → ¬ 𝑥𝐵 ) )
7 6 impancom ( ( 𝜑 ∧ ¬ 𝑎 = 𝑏 ) → ( 𝑥𝐴 → ¬ 𝑥𝐵 ) )
8 7 ralrimiv ( ( 𝜑 ∧ ¬ 𝑎 = 𝑏 ) → ∀ 𝑥𝐴 ¬ 𝑥𝐵 )
9 disj ( ( 𝐴𝐵 ) = ∅ ↔ ∀ 𝑥𝐴 ¬ 𝑥𝐵 )
10 8 9 sylibr ( ( 𝜑 ∧ ¬ 𝑎 = 𝑏 ) → ( 𝐴𝐵 ) = ∅ )
11 10 olcd ( ( 𝜑 ∧ ¬ 𝑎 = 𝑏 ) → ( 𝑎 = 𝑏 ∨ ( 𝐴𝐵 ) = ∅ ) )
12 11 expcom ( ¬ 𝑎 = 𝑏 → ( 𝜑 → ( 𝑎 = 𝑏 ∨ ( 𝐴𝐵 ) = ∅ ) ) )
13 4 12 pm2.61i ( 𝜑 → ( 𝑎 = 𝑏 ∨ ( 𝐴𝐵 ) = ∅ ) )
14 13 adantr ( ( 𝜑 ∧ ( 𝑎𝑉𝑏𝑉 ) ) → ( 𝑎 = 𝑏 ∨ ( 𝐴𝐵 ) = ∅ ) )
15 14 ralrimivva ( 𝜑 → ∀ 𝑎𝑉𝑏𝑉 ( 𝑎 = 𝑏 ∨ ( 𝐴𝐵 ) = ∅ ) )
16 1 disjor ( Disj 𝑎𝑉 𝐴 ↔ ∀ 𝑎𝑉𝑏𝑉 ( 𝑎 = 𝑏 ∨ ( 𝐴𝐵 ) = ∅ ) )
17 15 16 sylibr ( 𝜑Disj 𝑎𝑉 𝐴 )