| Step | Hyp | Ref | Expression | 
						
							| 1 |  | disjord.1 |  |-  ( a = b -> A = B ) | 
						
							| 2 |  | disjord.2 |  |-  ( ( ph /\ x e. A /\ x e. B ) -> a = b ) | 
						
							| 3 |  | orc |  |-  ( a = b -> ( a = b \/ ( A i^i B ) = (/) ) ) | 
						
							| 4 | 3 | a1d |  |-  ( a = b -> ( ph -> ( a = b \/ ( A i^i B ) = (/) ) ) ) | 
						
							| 5 | 2 | 3expia |  |-  ( ( ph /\ x e. A ) -> ( x e. B -> a = b ) ) | 
						
							| 6 | 5 | con3d |  |-  ( ( ph /\ x e. A ) -> ( -. a = b -> -. x e. B ) ) | 
						
							| 7 | 6 | impancom |  |-  ( ( ph /\ -. a = b ) -> ( x e. A -> -. x e. B ) ) | 
						
							| 8 | 7 | ralrimiv |  |-  ( ( ph /\ -. a = b ) -> A. x e. A -. x e. B ) | 
						
							| 9 |  | disj |  |-  ( ( A i^i B ) = (/) <-> A. x e. A -. x e. B ) | 
						
							| 10 | 8 9 | sylibr |  |-  ( ( ph /\ -. a = b ) -> ( A i^i B ) = (/) ) | 
						
							| 11 | 10 | olcd |  |-  ( ( ph /\ -. a = b ) -> ( a = b \/ ( A i^i B ) = (/) ) ) | 
						
							| 12 | 11 | expcom |  |-  ( -. a = b -> ( ph -> ( a = b \/ ( A i^i B ) = (/) ) ) ) | 
						
							| 13 | 4 12 | pm2.61i |  |-  ( ph -> ( a = b \/ ( A i^i B ) = (/) ) ) | 
						
							| 14 | 13 | adantr |  |-  ( ( ph /\ ( a e. V /\ b e. V ) ) -> ( a = b \/ ( A i^i B ) = (/) ) ) | 
						
							| 15 | 14 | ralrimivva |  |-  ( ph -> A. a e. V A. b e. V ( a = b \/ ( A i^i B ) = (/) ) ) | 
						
							| 16 | 1 | disjor |  |-  ( Disj_ a e. V A <-> A. a e. V A. b e. V ( a = b \/ ( A i^i B ) = (/) ) ) | 
						
							| 17 | 15 16 | sylibr |  |-  ( ph -> Disj_ a e. V A ) |