| Step | Hyp | Ref | Expression | 
						
							| 1 |  | s3wwlks2on.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | wwlknon |  |-  ( <" A B C "> e. ( A ( 2 WWalksNOn G ) C ) <-> ( <" A B C "> e. ( 2 WWalksN G ) /\ ( <" A B C "> ` 0 ) = A /\ ( <" A B C "> ` 2 ) = C ) ) | 
						
							| 3 | 2 | a1i |  |-  ( ( G e. UPGraph /\ A e. V /\ C e. V ) -> ( <" A B C "> e. ( A ( 2 WWalksNOn G ) C ) <-> ( <" A B C "> e. ( 2 WWalksN G ) /\ ( <" A B C "> ` 0 ) = A /\ ( <" A B C "> ` 2 ) = C ) ) ) | 
						
							| 4 |  | 3anass |  |-  ( ( <" A B C "> e. ( 2 WWalksN G ) /\ ( <" A B C "> ` 0 ) = A /\ ( <" A B C "> ` 2 ) = C ) <-> ( <" A B C "> e. ( 2 WWalksN G ) /\ ( ( <" A B C "> ` 0 ) = A /\ ( <" A B C "> ` 2 ) = C ) ) ) | 
						
							| 5 |  | s3fv0 |  |-  ( A e. V -> ( <" A B C "> ` 0 ) = A ) | 
						
							| 6 |  | s3fv2 |  |-  ( C e. V -> ( <" A B C "> ` 2 ) = C ) | 
						
							| 7 | 5 6 | anim12i |  |-  ( ( A e. V /\ C e. V ) -> ( ( <" A B C "> ` 0 ) = A /\ ( <" A B C "> ` 2 ) = C ) ) | 
						
							| 8 | 7 | 3adant1 |  |-  ( ( G e. UPGraph /\ A e. V /\ C e. V ) -> ( ( <" A B C "> ` 0 ) = A /\ ( <" A B C "> ` 2 ) = C ) ) | 
						
							| 9 | 8 | biantrud |  |-  ( ( G e. UPGraph /\ A e. V /\ C e. V ) -> ( <" A B C "> e. ( 2 WWalksN G ) <-> ( <" A B C "> e. ( 2 WWalksN G ) /\ ( ( <" A B C "> ` 0 ) = A /\ ( <" A B C "> ` 2 ) = C ) ) ) ) | 
						
							| 10 | 4 9 | bitr4id |  |-  ( ( G e. UPGraph /\ A e. V /\ C e. V ) -> ( ( <" A B C "> e. ( 2 WWalksN G ) /\ ( <" A B C "> ` 0 ) = A /\ ( <" A B C "> ` 2 ) = C ) <-> <" A B C "> e. ( 2 WWalksN G ) ) ) | 
						
							| 11 |  | wlklnwwlknupgr |  |-  ( G e. UPGraph -> ( E. f ( f ( Walks ` G ) <" A B C "> /\ ( # ` f ) = 2 ) <-> <" A B C "> e. ( 2 WWalksN G ) ) ) | 
						
							| 12 | 11 | bicomd |  |-  ( G e. UPGraph -> ( <" A B C "> e. ( 2 WWalksN G ) <-> E. f ( f ( Walks ` G ) <" A B C "> /\ ( # ` f ) = 2 ) ) ) | 
						
							| 13 | 12 | 3ad2ant1 |  |-  ( ( G e. UPGraph /\ A e. V /\ C e. V ) -> ( <" A B C "> e. ( 2 WWalksN G ) <-> E. f ( f ( Walks ` G ) <" A B C "> /\ ( # ` f ) = 2 ) ) ) | 
						
							| 14 | 3 10 13 | 3bitrd |  |-  ( ( G e. UPGraph /\ A e. V /\ C e. V ) -> ( <" A B C "> e. ( A ( 2 WWalksNOn G ) C ) <-> E. f ( f ( Walks ` G ) <" A B C "> /\ ( # ` f ) = 2 ) ) ) |