Metamath Proof Explorer


Theorem wwlks2onv

Description: If a length 3 string represents a walk of length 2, its components are vertices. (Contributed by Alexander van der Vekens, 19-Feb-2018) (Proof shortened by AV, 14-Mar-2022)

Ref Expression
Hypothesis wwlks2onv.v V=VtxG
Assertion wwlks2onv BU⟨“ABC”⟩A2WWalksNOnGCAVBVCV

Proof

Step Hyp Ref Expression
1 wwlks2onv.v V=VtxG
2 1 wwlksonvtx ⟨“ABC”⟩A2WWalksNOnGCAVCV
3 2 adantl BU⟨“ABC”⟩A2WWalksNOnGCAVCV
4 simprl BU⟨“ABC”⟩A2WWalksNOnGCAVCVAV
5 wwlknon ⟨“ABC”⟩A2WWalksNOnGC⟨“ABC”⟩2WWalksNG⟨“ABC”⟩0=A⟨“ABC”⟩2=C
6 wwlknbp1 ⟨“ABC”⟩2WWalksNG20⟨“ABC”⟩WordVtxG⟨“ABC”⟩=2+1
7 s3fv1 BU⟨“ABC”⟩1=B
8 7 eqcomd BUB=⟨“ABC”⟩1
9 8 adantl ⟨“ABC”⟩WordVtxGBUB=⟨“ABC”⟩1
10 1 eqcomi VtxG=V
11 10 wrdeqi WordVtxG=WordV
12 11 eleq2i ⟨“ABC”⟩WordVtxG⟨“ABC”⟩WordV
13 12 biimpi ⟨“ABC”⟩WordVtxG⟨“ABC”⟩WordV
14 1ex 1V
15 14 tpid2 1012
16 s3len ⟨“ABC”⟩=3
17 16 oveq2i 0..^⟨“ABC”⟩=0..^3
18 fzo0to3tp 0..^3=012
19 17 18 eqtri 0..^⟨“ABC”⟩=012
20 15 19 eleqtrri 10..^⟨“ABC”⟩
21 wrdsymbcl ⟨“ABC”⟩WordV10..^⟨“ABC”⟩⟨“ABC”⟩1V
22 13 20 21 sylancl ⟨“ABC”⟩WordVtxG⟨“ABC”⟩1V
23 22 adantr ⟨“ABC”⟩WordVtxGBU⟨“ABC”⟩1V
24 9 23 eqeltrd ⟨“ABC”⟩WordVtxGBUBV
25 24 ex ⟨“ABC”⟩WordVtxGBUBV
26 25 3ad2ant2 20⟨“ABC”⟩WordVtxG⟨“ABC”⟩=2+1BUBV
27 6 26 syl ⟨“ABC”⟩2WWalksNGBUBV
28 27 3ad2ant1 ⟨“ABC”⟩2WWalksNG⟨“ABC”⟩0=A⟨“ABC”⟩2=CBUBV
29 5 28 sylbi ⟨“ABC”⟩A2WWalksNOnGCBUBV
30 29 impcom BU⟨“ABC”⟩A2WWalksNOnGCBV
31 30 adantr BU⟨“ABC”⟩A2WWalksNOnGCAVCVBV
32 simprr BU⟨“ABC”⟩A2WWalksNOnGCAVCVCV
33 4 31 32 3jca BU⟨“ABC”⟩A2WWalksNOnGCAVCVAVBVCV
34 3 33 mpdan BU⟨“ABC”⟩A2WWalksNOnGCAVBVCV