Metamath Proof Explorer


Theorem wwlksonvtx

Description: If a word W represents a walk of length 2 on two classes A and C , these classes are vertices. (Contributed by AV, 14-Mar-2022)

Ref Expression
Hypothesis wwlksonvtx.v V=VtxG
Assertion wwlksonvtx WANWWalksNOnGCAVCV

Proof

Step Hyp Ref Expression
1 wwlksonvtx.v V=VtxG
2 fvex VtxgV
3 2 2 pm3.2i VtxgVVtxgV
4 3 rgen2w n0gVVtxgVVtxgV
5 df-wwlksnon WWalksNOn=n0,gVaVtxg,bVtxgwnWWalksNg|w0=awn=b
6 fveq2 g=GVtxg=VtxG
7 6 6 jca g=GVtxg=VtxGVtxg=VtxG
8 7 adantl n=Ng=GVtxg=VtxGVtxg=VtxG
9 5 8 el2mpocl n0gVVtxgVVtxgVWANWWalksNOnGCN0GVAVtxGCVtxG
10 4 9 ax-mp WANWWalksNOnGCN0GVAVtxGCVtxG
11 1 eleq2i AVAVtxG
12 1 eleq2i CVCVtxG
13 11 12 anbi12i AVCVAVtxGCVtxG
14 13 biimpri AVtxGCVtxGAVCV
15 10 14 simpl2im WANWWalksNOnGCAVCV