| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wwlks2onv.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 | 1 | wwlksonvtx |  |-  ( <" A B C "> e. ( A ( 2 WWalksNOn G ) C ) -> ( A e. V /\ C e. V ) ) | 
						
							| 3 | 2 | adantl |  |-  ( ( B e. U /\ <" A B C "> e. ( A ( 2 WWalksNOn G ) C ) ) -> ( A e. V /\ C e. V ) ) | 
						
							| 4 |  | simprl |  |-  ( ( ( B e. U /\ <" A B C "> e. ( A ( 2 WWalksNOn G ) C ) ) /\ ( A e. V /\ C e. V ) ) -> A e. V ) | 
						
							| 5 |  | wwlknon |  |-  ( <" A B C "> e. ( A ( 2 WWalksNOn G ) C ) <-> ( <" A B C "> e. ( 2 WWalksN G ) /\ ( <" A B C "> ` 0 ) = A /\ ( <" A B C "> ` 2 ) = C ) ) | 
						
							| 6 |  | wwlknbp1 |  |-  ( <" A B C "> e. ( 2 WWalksN G ) -> ( 2 e. NN0 /\ <" A B C "> e. Word ( Vtx ` G ) /\ ( # ` <" A B C "> ) = ( 2 + 1 ) ) ) | 
						
							| 7 |  | s3fv1 |  |-  ( B e. U -> ( <" A B C "> ` 1 ) = B ) | 
						
							| 8 | 7 | eqcomd |  |-  ( B e. U -> B = ( <" A B C "> ` 1 ) ) | 
						
							| 9 | 8 | adantl |  |-  ( ( <" A B C "> e. Word ( Vtx ` G ) /\ B e. U ) -> B = ( <" A B C "> ` 1 ) ) | 
						
							| 10 | 1 | eqcomi |  |-  ( Vtx ` G ) = V | 
						
							| 11 | 10 | wrdeqi |  |-  Word ( Vtx ` G ) = Word V | 
						
							| 12 | 11 | eleq2i |  |-  ( <" A B C "> e. Word ( Vtx ` G ) <-> <" A B C "> e. Word V ) | 
						
							| 13 | 12 | biimpi |  |-  ( <" A B C "> e. Word ( Vtx ` G ) -> <" A B C "> e. Word V ) | 
						
							| 14 |  | 1ex |  |-  1 e. _V | 
						
							| 15 | 14 | tpid2 |  |-  1 e. { 0 , 1 , 2 } | 
						
							| 16 |  | s3len |  |-  ( # ` <" A B C "> ) = 3 | 
						
							| 17 | 16 | oveq2i |  |-  ( 0 ..^ ( # ` <" A B C "> ) ) = ( 0 ..^ 3 ) | 
						
							| 18 |  | fzo0to3tp |  |-  ( 0 ..^ 3 ) = { 0 , 1 , 2 } | 
						
							| 19 | 17 18 | eqtri |  |-  ( 0 ..^ ( # ` <" A B C "> ) ) = { 0 , 1 , 2 } | 
						
							| 20 | 15 19 | eleqtrri |  |-  1 e. ( 0 ..^ ( # ` <" A B C "> ) ) | 
						
							| 21 |  | wrdsymbcl |  |-  ( ( <" A B C "> e. Word V /\ 1 e. ( 0 ..^ ( # ` <" A B C "> ) ) ) -> ( <" A B C "> ` 1 ) e. V ) | 
						
							| 22 | 13 20 21 | sylancl |  |-  ( <" A B C "> e. Word ( Vtx ` G ) -> ( <" A B C "> ` 1 ) e. V ) | 
						
							| 23 | 22 | adantr |  |-  ( ( <" A B C "> e. Word ( Vtx ` G ) /\ B e. U ) -> ( <" A B C "> ` 1 ) e. V ) | 
						
							| 24 | 9 23 | eqeltrd |  |-  ( ( <" A B C "> e. Word ( Vtx ` G ) /\ B e. U ) -> B e. V ) | 
						
							| 25 | 24 | ex |  |-  ( <" A B C "> e. Word ( Vtx ` G ) -> ( B e. U -> B e. V ) ) | 
						
							| 26 | 25 | 3ad2ant2 |  |-  ( ( 2 e. NN0 /\ <" A B C "> e. Word ( Vtx ` G ) /\ ( # ` <" A B C "> ) = ( 2 + 1 ) ) -> ( B e. U -> B e. V ) ) | 
						
							| 27 | 6 26 | syl |  |-  ( <" A B C "> e. ( 2 WWalksN G ) -> ( B e. U -> B e. V ) ) | 
						
							| 28 | 27 | 3ad2ant1 |  |-  ( ( <" A B C "> e. ( 2 WWalksN G ) /\ ( <" A B C "> ` 0 ) = A /\ ( <" A B C "> ` 2 ) = C ) -> ( B e. U -> B e. V ) ) | 
						
							| 29 | 5 28 | sylbi |  |-  ( <" A B C "> e. ( A ( 2 WWalksNOn G ) C ) -> ( B e. U -> B e. V ) ) | 
						
							| 30 | 29 | impcom |  |-  ( ( B e. U /\ <" A B C "> e. ( A ( 2 WWalksNOn G ) C ) ) -> B e. V ) | 
						
							| 31 | 30 | adantr |  |-  ( ( ( B e. U /\ <" A B C "> e. ( A ( 2 WWalksNOn G ) C ) ) /\ ( A e. V /\ C e. V ) ) -> B e. V ) | 
						
							| 32 |  | simprr |  |-  ( ( ( B e. U /\ <" A B C "> e. ( A ( 2 WWalksNOn G ) C ) ) /\ ( A e. V /\ C e. V ) ) -> C e. V ) | 
						
							| 33 | 4 31 32 | 3jca |  |-  ( ( ( B e. U /\ <" A B C "> e. ( A ( 2 WWalksNOn G ) C ) ) /\ ( A e. V /\ C e. V ) ) -> ( A e. V /\ B e. V /\ C e. V ) ) | 
						
							| 34 | 3 33 | mpdan |  |-  ( ( B e. U /\ <" A B C "> e. ( A ( 2 WWalksNOn G ) C ) ) -> ( A e. V /\ B e. V /\ C e. V ) ) |