Step |
Hyp |
Ref |
Expression |
1 |
|
wwlks2onv.v |
|- V = ( Vtx ` G ) |
2 |
1
|
wwlksonvtx |
|- ( W e. ( A ( 2 WWalksNOn G ) C ) -> ( A e. V /\ C e. V ) ) |
3 |
|
wwlknon |
|- ( W e. ( A ( 2 WWalksNOn G ) C ) <-> ( W e. ( 2 WWalksN G ) /\ ( W ` 0 ) = A /\ ( W ` 2 ) = C ) ) |
4 |
|
wwlknbp1 |
|- ( W e. ( 2 WWalksN G ) -> ( 2 e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( 2 + 1 ) ) ) |
5 |
|
2p1e3 |
|- ( 2 + 1 ) = 3 |
6 |
5
|
eqeq2i |
|- ( ( # ` W ) = ( 2 + 1 ) <-> ( # ` W ) = 3 ) |
7 |
|
1ex |
|- 1 e. _V |
8 |
7
|
tpid2 |
|- 1 e. { 0 , 1 , 2 } |
9 |
|
fzo0to3tp |
|- ( 0 ..^ 3 ) = { 0 , 1 , 2 } |
10 |
8 9
|
eleqtrri |
|- 1 e. ( 0 ..^ 3 ) |
11 |
|
oveq2 |
|- ( ( # ` W ) = 3 -> ( 0 ..^ ( # ` W ) ) = ( 0 ..^ 3 ) ) |
12 |
10 11
|
eleqtrrid |
|- ( ( # ` W ) = 3 -> 1 e. ( 0 ..^ ( # ` W ) ) ) |
13 |
|
wrdsymbcl |
|- ( ( W e. Word ( Vtx ` G ) /\ 1 e. ( 0 ..^ ( # ` W ) ) ) -> ( W ` 1 ) e. ( Vtx ` G ) ) |
14 |
12 13
|
sylan2 |
|- ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = 3 ) -> ( W ` 1 ) e. ( Vtx ` G ) ) |
15 |
14
|
3ad2ant1 |
|- ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = 3 ) /\ ( ( W ` 0 ) = A /\ ( W ` 2 ) = C ) /\ ( A e. V /\ C e. V ) ) -> ( W ` 1 ) e. ( Vtx ` G ) ) |
16 |
|
simpl1r |
|- ( ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = 3 ) /\ ( ( W ` 0 ) = A /\ ( W ` 2 ) = C ) /\ ( A e. V /\ C e. V ) ) /\ ( W ` 1 ) e. ( Vtx ` G ) ) -> ( # ` W ) = 3 ) |
17 |
|
simpl |
|- ( ( ( W ` 0 ) = A /\ ( W ` 2 ) = C ) -> ( W ` 0 ) = A ) |
18 |
|
eqidd |
|- ( ( ( W ` 0 ) = A /\ ( W ` 2 ) = C ) -> ( W ` 1 ) = ( W ` 1 ) ) |
19 |
|
simpr |
|- ( ( ( W ` 0 ) = A /\ ( W ` 2 ) = C ) -> ( W ` 2 ) = C ) |
20 |
17 18 19
|
3jca |
|- ( ( ( W ` 0 ) = A /\ ( W ` 2 ) = C ) -> ( ( W ` 0 ) = A /\ ( W ` 1 ) = ( W ` 1 ) /\ ( W ` 2 ) = C ) ) |
21 |
20
|
3ad2ant2 |
|- ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = 3 ) /\ ( ( W ` 0 ) = A /\ ( W ` 2 ) = C ) /\ ( A e. V /\ C e. V ) ) -> ( ( W ` 0 ) = A /\ ( W ` 1 ) = ( W ` 1 ) /\ ( W ` 2 ) = C ) ) |
22 |
21
|
adantr |
|- ( ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = 3 ) /\ ( ( W ` 0 ) = A /\ ( W ` 2 ) = C ) /\ ( A e. V /\ C e. V ) ) /\ ( W ` 1 ) e. ( Vtx ` G ) ) -> ( ( W ` 0 ) = A /\ ( W ` 1 ) = ( W ` 1 ) /\ ( W ` 2 ) = C ) ) |
23 |
1
|
eqcomi |
|- ( Vtx ` G ) = V |
24 |
23
|
wrdeqi |
|- Word ( Vtx ` G ) = Word V |
25 |
24
|
eleq2i |
|- ( W e. Word ( Vtx ` G ) <-> W e. Word V ) |
26 |
25
|
biimpi |
|- ( W e. Word ( Vtx ` G ) -> W e. Word V ) |
27 |
26
|
adantr |
|- ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = 3 ) -> W e. Word V ) |
28 |
27
|
3ad2ant1 |
|- ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = 3 ) /\ ( ( W ` 0 ) = A /\ ( W ` 2 ) = C ) /\ ( A e. V /\ C e. V ) ) -> W e. Word V ) |
29 |
28
|
adantr |
|- ( ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = 3 ) /\ ( ( W ` 0 ) = A /\ ( W ` 2 ) = C ) /\ ( A e. V /\ C e. V ) ) /\ ( W ` 1 ) e. ( Vtx ` G ) ) -> W e. Word V ) |
30 |
|
simpl3l |
|- ( ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = 3 ) /\ ( ( W ` 0 ) = A /\ ( W ` 2 ) = C ) /\ ( A e. V /\ C e. V ) ) /\ ( W ` 1 ) e. ( Vtx ` G ) ) -> A e. V ) |
31 |
23
|
eleq2i |
|- ( ( W ` 1 ) e. ( Vtx ` G ) <-> ( W ` 1 ) e. V ) |
32 |
31
|
biimpi |
|- ( ( W ` 1 ) e. ( Vtx ` G ) -> ( W ` 1 ) e. V ) |
33 |
32
|
adantl |
|- ( ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = 3 ) /\ ( ( W ` 0 ) = A /\ ( W ` 2 ) = C ) /\ ( A e. V /\ C e. V ) ) /\ ( W ` 1 ) e. ( Vtx ` G ) ) -> ( W ` 1 ) e. V ) |
34 |
|
simpl3r |
|- ( ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = 3 ) /\ ( ( W ` 0 ) = A /\ ( W ` 2 ) = C ) /\ ( A e. V /\ C e. V ) ) /\ ( W ` 1 ) e. ( Vtx ` G ) ) -> C e. V ) |
35 |
|
eqwrds3 |
|- ( ( W e. Word V /\ ( A e. V /\ ( W ` 1 ) e. V /\ C e. V ) ) -> ( W = <" A ( W ` 1 ) C "> <-> ( ( # ` W ) = 3 /\ ( ( W ` 0 ) = A /\ ( W ` 1 ) = ( W ` 1 ) /\ ( W ` 2 ) = C ) ) ) ) |
36 |
29 30 33 34 35
|
syl13anc |
|- ( ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = 3 ) /\ ( ( W ` 0 ) = A /\ ( W ` 2 ) = C ) /\ ( A e. V /\ C e. V ) ) /\ ( W ` 1 ) e. ( Vtx ` G ) ) -> ( W = <" A ( W ` 1 ) C "> <-> ( ( # ` W ) = 3 /\ ( ( W ` 0 ) = A /\ ( W ` 1 ) = ( W ` 1 ) /\ ( W ` 2 ) = C ) ) ) ) |
37 |
16 22 36
|
mpbir2and |
|- ( ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = 3 ) /\ ( ( W ` 0 ) = A /\ ( W ` 2 ) = C ) /\ ( A e. V /\ C e. V ) ) /\ ( W ` 1 ) e. ( Vtx ` G ) ) -> W = <" A ( W ` 1 ) C "> ) |
38 |
37 33
|
jca |
|- ( ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = 3 ) /\ ( ( W ` 0 ) = A /\ ( W ` 2 ) = C ) /\ ( A e. V /\ C e. V ) ) /\ ( W ` 1 ) e. ( Vtx ` G ) ) -> ( W = <" A ( W ` 1 ) C "> /\ ( W ` 1 ) e. V ) ) |
39 |
15 38
|
mpdan |
|- ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = 3 ) /\ ( ( W ` 0 ) = A /\ ( W ` 2 ) = C ) /\ ( A e. V /\ C e. V ) ) -> ( W = <" A ( W ` 1 ) C "> /\ ( W ` 1 ) e. V ) ) |
40 |
39
|
3exp |
|- ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = 3 ) -> ( ( ( W ` 0 ) = A /\ ( W ` 2 ) = C ) -> ( ( A e. V /\ C e. V ) -> ( W = <" A ( W ` 1 ) C "> /\ ( W ` 1 ) e. V ) ) ) ) |
41 |
6 40
|
sylan2b |
|- ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( 2 + 1 ) ) -> ( ( ( W ` 0 ) = A /\ ( W ` 2 ) = C ) -> ( ( A e. V /\ C e. V ) -> ( W = <" A ( W ` 1 ) C "> /\ ( W ` 1 ) e. V ) ) ) ) |
42 |
41
|
3adant1 |
|- ( ( 2 e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( 2 + 1 ) ) -> ( ( ( W ` 0 ) = A /\ ( W ` 2 ) = C ) -> ( ( A e. V /\ C e. V ) -> ( W = <" A ( W ` 1 ) C "> /\ ( W ` 1 ) e. V ) ) ) ) |
43 |
4 42
|
syl |
|- ( W e. ( 2 WWalksN G ) -> ( ( ( W ` 0 ) = A /\ ( W ` 2 ) = C ) -> ( ( A e. V /\ C e. V ) -> ( W = <" A ( W ` 1 ) C "> /\ ( W ` 1 ) e. V ) ) ) ) |
44 |
43
|
3impib |
|- ( ( W e. ( 2 WWalksN G ) /\ ( W ` 0 ) = A /\ ( W ` 2 ) = C ) -> ( ( A e. V /\ C e. V ) -> ( W = <" A ( W ` 1 ) C "> /\ ( W ` 1 ) e. V ) ) ) |
45 |
3 44
|
sylbi |
|- ( W e. ( A ( 2 WWalksNOn G ) C ) -> ( ( A e. V /\ C e. V ) -> ( W = <" A ( W ` 1 ) C "> /\ ( W ` 1 ) e. V ) ) ) |
46 |
2 45
|
mpd |
|- ( W e. ( A ( 2 WWalksNOn G ) C ) -> ( W = <" A ( W ` 1 ) C "> /\ ( W ` 1 ) e. V ) ) |