| Step |
Hyp |
Ref |
Expression |
| 1 |
|
wwlks2onv.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
| 2 |
1
|
wwlksonvtx |
⊢ ( 𝑊 ∈ ( 𝐴 ( 2 WWalksNOn 𝐺 ) 𝐶 ) → ( 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) |
| 3 |
|
wwlknon |
⊢ ( 𝑊 ∈ ( 𝐴 ( 2 WWalksNOn 𝐺 ) 𝐶 ) ↔ ( 𝑊 ∈ ( 2 WWalksN 𝐺 ) ∧ ( 𝑊 ‘ 0 ) = 𝐴 ∧ ( 𝑊 ‘ 2 ) = 𝐶 ) ) |
| 4 |
|
wwlknbp1 |
⊢ ( 𝑊 ∈ ( 2 WWalksN 𝐺 ) → ( 2 ∈ ℕ0 ∧ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 2 + 1 ) ) ) |
| 5 |
|
2p1e3 |
⊢ ( 2 + 1 ) = 3 |
| 6 |
5
|
eqeq2i |
⊢ ( ( ♯ ‘ 𝑊 ) = ( 2 + 1 ) ↔ ( ♯ ‘ 𝑊 ) = 3 ) |
| 7 |
|
1ex |
⊢ 1 ∈ V |
| 8 |
7
|
tpid2 |
⊢ 1 ∈ { 0 , 1 , 2 } |
| 9 |
|
fzo0to3tp |
⊢ ( 0 ..^ 3 ) = { 0 , 1 , 2 } |
| 10 |
8 9
|
eleqtrri |
⊢ 1 ∈ ( 0 ..^ 3 ) |
| 11 |
|
oveq2 |
⊢ ( ( ♯ ‘ 𝑊 ) = 3 → ( 0 ..^ ( ♯ ‘ 𝑊 ) ) = ( 0 ..^ 3 ) ) |
| 12 |
10 11
|
eleqtrrid |
⊢ ( ( ♯ ‘ 𝑊 ) = 3 → 1 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 13 |
|
wrdsymbcl |
⊢ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 1 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 ‘ 1 ) ∈ ( Vtx ‘ 𝐺 ) ) |
| 14 |
12 13
|
sylan2 |
⊢ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = 3 ) → ( 𝑊 ‘ 1 ) ∈ ( Vtx ‘ 𝐺 ) ) |
| 15 |
14
|
3ad2ant1 |
⊢ ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = 3 ) ∧ ( ( 𝑊 ‘ 0 ) = 𝐴 ∧ ( 𝑊 ‘ 2 ) = 𝐶 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( 𝑊 ‘ 1 ) ∈ ( Vtx ‘ 𝐺 ) ) |
| 16 |
|
simpl1r |
⊢ ( ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = 3 ) ∧ ( ( 𝑊 ‘ 0 ) = 𝐴 ∧ ( 𝑊 ‘ 2 ) = 𝐶 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) ∧ ( 𝑊 ‘ 1 ) ∈ ( Vtx ‘ 𝐺 ) ) → ( ♯ ‘ 𝑊 ) = 3 ) |
| 17 |
|
simpl |
⊢ ( ( ( 𝑊 ‘ 0 ) = 𝐴 ∧ ( 𝑊 ‘ 2 ) = 𝐶 ) → ( 𝑊 ‘ 0 ) = 𝐴 ) |
| 18 |
|
eqidd |
⊢ ( ( ( 𝑊 ‘ 0 ) = 𝐴 ∧ ( 𝑊 ‘ 2 ) = 𝐶 ) → ( 𝑊 ‘ 1 ) = ( 𝑊 ‘ 1 ) ) |
| 19 |
|
simpr |
⊢ ( ( ( 𝑊 ‘ 0 ) = 𝐴 ∧ ( 𝑊 ‘ 2 ) = 𝐶 ) → ( 𝑊 ‘ 2 ) = 𝐶 ) |
| 20 |
17 18 19
|
3jca |
⊢ ( ( ( 𝑊 ‘ 0 ) = 𝐴 ∧ ( 𝑊 ‘ 2 ) = 𝐶 ) → ( ( 𝑊 ‘ 0 ) = 𝐴 ∧ ( 𝑊 ‘ 1 ) = ( 𝑊 ‘ 1 ) ∧ ( 𝑊 ‘ 2 ) = 𝐶 ) ) |
| 21 |
20
|
3ad2ant2 |
⊢ ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = 3 ) ∧ ( ( 𝑊 ‘ 0 ) = 𝐴 ∧ ( 𝑊 ‘ 2 ) = 𝐶 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( ( 𝑊 ‘ 0 ) = 𝐴 ∧ ( 𝑊 ‘ 1 ) = ( 𝑊 ‘ 1 ) ∧ ( 𝑊 ‘ 2 ) = 𝐶 ) ) |
| 22 |
21
|
adantr |
⊢ ( ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = 3 ) ∧ ( ( 𝑊 ‘ 0 ) = 𝐴 ∧ ( 𝑊 ‘ 2 ) = 𝐶 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) ∧ ( 𝑊 ‘ 1 ) ∈ ( Vtx ‘ 𝐺 ) ) → ( ( 𝑊 ‘ 0 ) = 𝐴 ∧ ( 𝑊 ‘ 1 ) = ( 𝑊 ‘ 1 ) ∧ ( 𝑊 ‘ 2 ) = 𝐶 ) ) |
| 23 |
1
|
eqcomi |
⊢ ( Vtx ‘ 𝐺 ) = 𝑉 |
| 24 |
23
|
wrdeqi |
⊢ Word ( Vtx ‘ 𝐺 ) = Word 𝑉 |
| 25 |
24
|
eleq2i |
⊢ ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ↔ 𝑊 ∈ Word 𝑉 ) |
| 26 |
25
|
biimpi |
⊢ ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) → 𝑊 ∈ Word 𝑉 ) |
| 27 |
26
|
adantr |
⊢ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = 3 ) → 𝑊 ∈ Word 𝑉 ) |
| 28 |
27
|
3ad2ant1 |
⊢ ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = 3 ) ∧ ( ( 𝑊 ‘ 0 ) = 𝐴 ∧ ( 𝑊 ‘ 2 ) = 𝐶 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → 𝑊 ∈ Word 𝑉 ) |
| 29 |
28
|
adantr |
⊢ ( ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = 3 ) ∧ ( ( 𝑊 ‘ 0 ) = 𝐴 ∧ ( 𝑊 ‘ 2 ) = 𝐶 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) ∧ ( 𝑊 ‘ 1 ) ∈ ( Vtx ‘ 𝐺 ) ) → 𝑊 ∈ Word 𝑉 ) |
| 30 |
|
simpl3l |
⊢ ( ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = 3 ) ∧ ( ( 𝑊 ‘ 0 ) = 𝐴 ∧ ( 𝑊 ‘ 2 ) = 𝐶 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) ∧ ( 𝑊 ‘ 1 ) ∈ ( Vtx ‘ 𝐺 ) ) → 𝐴 ∈ 𝑉 ) |
| 31 |
23
|
eleq2i |
⊢ ( ( 𝑊 ‘ 1 ) ∈ ( Vtx ‘ 𝐺 ) ↔ ( 𝑊 ‘ 1 ) ∈ 𝑉 ) |
| 32 |
31
|
biimpi |
⊢ ( ( 𝑊 ‘ 1 ) ∈ ( Vtx ‘ 𝐺 ) → ( 𝑊 ‘ 1 ) ∈ 𝑉 ) |
| 33 |
32
|
adantl |
⊢ ( ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = 3 ) ∧ ( ( 𝑊 ‘ 0 ) = 𝐴 ∧ ( 𝑊 ‘ 2 ) = 𝐶 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) ∧ ( 𝑊 ‘ 1 ) ∈ ( Vtx ‘ 𝐺 ) ) → ( 𝑊 ‘ 1 ) ∈ 𝑉 ) |
| 34 |
|
simpl3r |
⊢ ( ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = 3 ) ∧ ( ( 𝑊 ‘ 0 ) = 𝐴 ∧ ( 𝑊 ‘ 2 ) = 𝐶 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) ∧ ( 𝑊 ‘ 1 ) ∈ ( Vtx ‘ 𝐺 ) ) → 𝐶 ∈ 𝑉 ) |
| 35 |
|
eqwrds3 |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( 𝐴 ∈ 𝑉 ∧ ( 𝑊 ‘ 1 ) ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( 𝑊 = 〈“ 𝐴 ( 𝑊 ‘ 1 ) 𝐶 ”〉 ↔ ( ( ♯ ‘ 𝑊 ) = 3 ∧ ( ( 𝑊 ‘ 0 ) = 𝐴 ∧ ( 𝑊 ‘ 1 ) = ( 𝑊 ‘ 1 ) ∧ ( 𝑊 ‘ 2 ) = 𝐶 ) ) ) ) |
| 36 |
29 30 33 34 35
|
syl13anc |
⊢ ( ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = 3 ) ∧ ( ( 𝑊 ‘ 0 ) = 𝐴 ∧ ( 𝑊 ‘ 2 ) = 𝐶 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) ∧ ( 𝑊 ‘ 1 ) ∈ ( Vtx ‘ 𝐺 ) ) → ( 𝑊 = 〈“ 𝐴 ( 𝑊 ‘ 1 ) 𝐶 ”〉 ↔ ( ( ♯ ‘ 𝑊 ) = 3 ∧ ( ( 𝑊 ‘ 0 ) = 𝐴 ∧ ( 𝑊 ‘ 1 ) = ( 𝑊 ‘ 1 ) ∧ ( 𝑊 ‘ 2 ) = 𝐶 ) ) ) ) |
| 37 |
16 22 36
|
mpbir2and |
⊢ ( ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = 3 ) ∧ ( ( 𝑊 ‘ 0 ) = 𝐴 ∧ ( 𝑊 ‘ 2 ) = 𝐶 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) ∧ ( 𝑊 ‘ 1 ) ∈ ( Vtx ‘ 𝐺 ) ) → 𝑊 = 〈“ 𝐴 ( 𝑊 ‘ 1 ) 𝐶 ”〉 ) |
| 38 |
37 33
|
jca |
⊢ ( ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = 3 ) ∧ ( ( 𝑊 ‘ 0 ) = 𝐴 ∧ ( 𝑊 ‘ 2 ) = 𝐶 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) ∧ ( 𝑊 ‘ 1 ) ∈ ( Vtx ‘ 𝐺 ) ) → ( 𝑊 = 〈“ 𝐴 ( 𝑊 ‘ 1 ) 𝐶 ”〉 ∧ ( 𝑊 ‘ 1 ) ∈ 𝑉 ) ) |
| 39 |
15 38
|
mpdan |
⊢ ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = 3 ) ∧ ( ( 𝑊 ‘ 0 ) = 𝐴 ∧ ( 𝑊 ‘ 2 ) = 𝐶 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( 𝑊 = 〈“ 𝐴 ( 𝑊 ‘ 1 ) 𝐶 ”〉 ∧ ( 𝑊 ‘ 1 ) ∈ 𝑉 ) ) |
| 40 |
39
|
3exp |
⊢ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = 3 ) → ( ( ( 𝑊 ‘ 0 ) = 𝐴 ∧ ( 𝑊 ‘ 2 ) = 𝐶 ) → ( ( 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ( 𝑊 = 〈“ 𝐴 ( 𝑊 ‘ 1 ) 𝐶 ”〉 ∧ ( 𝑊 ‘ 1 ) ∈ 𝑉 ) ) ) ) |
| 41 |
6 40
|
sylan2b |
⊢ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 2 + 1 ) ) → ( ( ( 𝑊 ‘ 0 ) = 𝐴 ∧ ( 𝑊 ‘ 2 ) = 𝐶 ) → ( ( 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ( 𝑊 = 〈“ 𝐴 ( 𝑊 ‘ 1 ) 𝐶 ”〉 ∧ ( 𝑊 ‘ 1 ) ∈ 𝑉 ) ) ) ) |
| 42 |
41
|
3adant1 |
⊢ ( ( 2 ∈ ℕ0 ∧ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 2 + 1 ) ) → ( ( ( 𝑊 ‘ 0 ) = 𝐴 ∧ ( 𝑊 ‘ 2 ) = 𝐶 ) → ( ( 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ( 𝑊 = 〈“ 𝐴 ( 𝑊 ‘ 1 ) 𝐶 ”〉 ∧ ( 𝑊 ‘ 1 ) ∈ 𝑉 ) ) ) ) |
| 43 |
4 42
|
syl |
⊢ ( 𝑊 ∈ ( 2 WWalksN 𝐺 ) → ( ( ( 𝑊 ‘ 0 ) = 𝐴 ∧ ( 𝑊 ‘ 2 ) = 𝐶 ) → ( ( 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ( 𝑊 = 〈“ 𝐴 ( 𝑊 ‘ 1 ) 𝐶 ”〉 ∧ ( 𝑊 ‘ 1 ) ∈ 𝑉 ) ) ) ) |
| 44 |
43
|
3impib |
⊢ ( ( 𝑊 ∈ ( 2 WWalksN 𝐺 ) ∧ ( 𝑊 ‘ 0 ) = 𝐴 ∧ ( 𝑊 ‘ 2 ) = 𝐶 ) → ( ( 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ( 𝑊 = 〈“ 𝐴 ( 𝑊 ‘ 1 ) 𝐶 ”〉 ∧ ( 𝑊 ‘ 1 ) ∈ 𝑉 ) ) ) |
| 45 |
3 44
|
sylbi |
⊢ ( 𝑊 ∈ ( 𝐴 ( 2 WWalksNOn 𝐺 ) 𝐶 ) → ( ( 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ( 𝑊 = 〈“ 𝐴 ( 𝑊 ‘ 1 ) 𝐶 ”〉 ∧ ( 𝑊 ‘ 1 ) ∈ 𝑉 ) ) ) |
| 46 |
2 45
|
mpd |
⊢ ( 𝑊 ∈ ( 𝐴 ( 2 WWalksNOn 𝐺 ) 𝐶 ) → ( 𝑊 = 〈“ 𝐴 ( 𝑊 ‘ 1 ) 𝐶 ”〉 ∧ ( 𝑊 ‘ 1 ) ∈ 𝑉 ) ) |