| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wwlks2onv.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 | 1 | wwlksonvtx | ⊢ ( 𝑊  ∈  ( 𝐴 ( 2  WWalksNOn  𝐺 ) 𝐶 )  →  ( 𝐴  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) ) | 
						
							| 3 |  | wwlknon | ⊢ ( 𝑊  ∈  ( 𝐴 ( 2  WWalksNOn  𝐺 ) 𝐶 )  ↔  ( 𝑊  ∈  ( 2  WWalksN  𝐺 )  ∧  ( 𝑊 ‘ 0 )  =  𝐴  ∧  ( 𝑊 ‘ 2 )  =  𝐶 ) ) | 
						
							| 4 |  | wwlknbp1 | ⊢ ( 𝑊  ∈  ( 2  WWalksN  𝐺 )  →  ( 2  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( 2  +  1 ) ) ) | 
						
							| 5 |  | 2p1e3 | ⊢ ( 2  +  1 )  =  3 | 
						
							| 6 | 5 | eqeq2i | ⊢ ( ( ♯ ‘ 𝑊 )  =  ( 2  +  1 )  ↔  ( ♯ ‘ 𝑊 )  =  3 ) | 
						
							| 7 |  | 1ex | ⊢ 1  ∈  V | 
						
							| 8 | 7 | tpid2 | ⊢ 1  ∈  { 0 ,  1 ,  2 } | 
						
							| 9 |  | fzo0to3tp | ⊢ ( 0 ..^ 3 )  =  { 0 ,  1 ,  2 } | 
						
							| 10 | 8 9 | eleqtrri | ⊢ 1  ∈  ( 0 ..^ 3 ) | 
						
							| 11 |  | oveq2 | ⊢ ( ( ♯ ‘ 𝑊 )  =  3  →  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  =  ( 0 ..^ 3 ) ) | 
						
							| 12 | 10 11 | eleqtrrid | ⊢ ( ( ♯ ‘ 𝑊 )  =  3  →  1  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 13 |  | wrdsymbcl | ⊢ ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  1  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( 𝑊 ‘ 1 )  ∈  ( Vtx ‘ 𝐺 ) ) | 
						
							| 14 | 12 13 | sylan2 | ⊢ ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  3 )  →  ( 𝑊 ‘ 1 )  ∈  ( Vtx ‘ 𝐺 ) ) | 
						
							| 15 | 14 | 3ad2ant1 | ⊢ ( ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  3 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝐴  ∧  ( 𝑊 ‘ 2 )  =  𝐶 )  ∧  ( 𝐴  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  →  ( 𝑊 ‘ 1 )  ∈  ( Vtx ‘ 𝐺 ) ) | 
						
							| 16 |  | simpl1r | ⊢ ( ( ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  3 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝐴  ∧  ( 𝑊 ‘ 2 )  =  𝐶 )  ∧  ( 𝐴  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  ∧  ( 𝑊 ‘ 1 )  ∈  ( Vtx ‘ 𝐺 ) )  →  ( ♯ ‘ 𝑊 )  =  3 ) | 
						
							| 17 |  | simpl | ⊢ ( ( ( 𝑊 ‘ 0 )  =  𝐴  ∧  ( 𝑊 ‘ 2 )  =  𝐶 )  →  ( 𝑊 ‘ 0 )  =  𝐴 ) | 
						
							| 18 |  | eqidd | ⊢ ( ( ( 𝑊 ‘ 0 )  =  𝐴  ∧  ( 𝑊 ‘ 2 )  =  𝐶 )  →  ( 𝑊 ‘ 1 )  =  ( 𝑊 ‘ 1 ) ) | 
						
							| 19 |  | simpr | ⊢ ( ( ( 𝑊 ‘ 0 )  =  𝐴  ∧  ( 𝑊 ‘ 2 )  =  𝐶 )  →  ( 𝑊 ‘ 2 )  =  𝐶 ) | 
						
							| 20 | 17 18 19 | 3jca | ⊢ ( ( ( 𝑊 ‘ 0 )  =  𝐴  ∧  ( 𝑊 ‘ 2 )  =  𝐶 )  →  ( ( 𝑊 ‘ 0 )  =  𝐴  ∧  ( 𝑊 ‘ 1 )  =  ( 𝑊 ‘ 1 )  ∧  ( 𝑊 ‘ 2 )  =  𝐶 ) ) | 
						
							| 21 | 20 | 3ad2ant2 | ⊢ ( ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  3 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝐴  ∧  ( 𝑊 ‘ 2 )  =  𝐶 )  ∧  ( 𝐴  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  →  ( ( 𝑊 ‘ 0 )  =  𝐴  ∧  ( 𝑊 ‘ 1 )  =  ( 𝑊 ‘ 1 )  ∧  ( 𝑊 ‘ 2 )  =  𝐶 ) ) | 
						
							| 22 | 21 | adantr | ⊢ ( ( ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  3 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝐴  ∧  ( 𝑊 ‘ 2 )  =  𝐶 )  ∧  ( 𝐴  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  ∧  ( 𝑊 ‘ 1 )  ∈  ( Vtx ‘ 𝐺 ) )  →  ( ( 𝑊 ‘ 0 )  =  𝐴  ∧  ( 𝑊 ‘ 1 )  =  ( 𝑊 ‘ 1 )  ∧  ( 𝑊 ‘ 2 )  =  𝐶 ) ) | 
						
							| 23 | 1 | eqcomi | ⊢ ( Vtx ‘ 𝐺 )  =  𝑉 | 
						
							| 24 | 23 | wrdeqi | ⊢ Word  ( Vtx ‘ 𝐺 )  =  Word  𝑉 | 
						
							| 25 | 24 | eleq2i | ⊢ ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ↔  𝑊  ∈  Word  𝑉 ) | 
						
							| 26 | 25 | biimpi | ⊢ ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  →  𝑊  ∈  Word  𝑉 ) | 
						
							| 27 | 26 | adantr | ⊢ ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  3 )  →  𝑊  ∈  Word  𝑉 ) | 
						
							| 28 | 27 | 3ad2ant1 | ⊢ ( ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  3 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝐴  ∧  ( 𝑊 ‘ 2 )  =  𝐶 )  ∧  ( 𝐴  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  →  𝑊  ∈  Word  𝑉 ) | 
						
							| 29 | 28 | adantr | ⊢ ( ( ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  3 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝐴  ∧  ( 𝑊 ‘ 2 )  =  𝐶 )  ∧  ( 𝐴  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  ∧  ( 𝑊 ‘ 1 )  ∈  ( Vtx ‘ 𝐺 ) )  →  𝑊  ∈  Word  𝑉 ) | 
						
							| 30 |  | simpl3l | ⊢ ( ( ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  3 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝐴  ∧  ( 𝑊 ‘ 2 )  =  𝐶 )  ∧  ( 𝐴  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  ∧  ( 𝑊 ‘ 1 )  ∈  ( Vtx ‘ 𝐺 ) )  →  𝐴  ∈  𝑉 ) | 
						
							| 31 | 23 | eleq2i | ⊢ ( ( 𝑊 ‘ 1 )  ∈  ( Vtx ‘ 𝐺 )  ↔  ( 𝑊 ‘ 1 )  ∈  𝑉 ) | 
						
							| 32 | 31 | biimpi | ⊢ ( ( 𝑊 ‘ 1 )  ∈  ( Vtx ‘ 𝐺 )  →  ( 𝑊 ‘ 1 )  ∈  𝑉 ) | 
						
							| 33 | 32 | adantl | ⊢ ( ( ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  3 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝐴  ∧  ( 𝑊 ‘ 2 )  =  𝐶 )  ∧  ( 𝐴  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  ∧  ( 𝑊 ‘ 1 )  ∈  ( Vtx ‘ 𝐺 ) )  →  ( 𝑊 ‘ 1 )  ∈  𝑉 ) | 
						
							| 34 |  | simpl3r | ⊢ ( ( ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  3 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝐴  ∧  ( 𝑊 ‘ 2 )  =  𝐶 )  ∧  ( 𝐴  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  ∧  ( 𝑊 ‘ 1 )  ∈  ( Vtx ‘ 𝐺 ) )  →  𝐶  ∈  𝑉 ) | 
						
							| 35 |  | eqwrds3 | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  ( 𝐴  ∈  𝑉  ∧  ( 𝑊 ‘ 1 )  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  →  ( 𝑊  =  〈“ 𝐴 ( 𝑊 ‘ 1 ) 𝐶 ”〉  ↔  ( ( ♯ ‘ 𝑊 )  =  3  ∧  ( ( 𝑊 ‘ 0 )  =  𝐴  ∧  ( 𝑊 ‘ 1 )  =  ( 𝑊 ‘ 1 )  ∧  ( 𝑊 ‘ 2 )  =  𝐶 ) ) ) ) | 
						
							| 36 | 29 30 33 34 35 | syl13anc | ⊢ ( ( ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  3 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝐴  ∧  ( 𝑊 ‘ 2 )  =  𝐶 )  ∧  ( 𝐴  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  ∧  ( 𝑊 ‘ 1 )  ∈  ( Vtx ‘ 𝐺 ) )  →  ( 𝑊  =  〈“ 𝐴 ( 𝑊 ‘ 1 ) 𝐶 ”〉  ↔  ( ( ♯ ‘ 𝑊 )  =  3  ∧  ( ( 𝑊 ‘ 0 )  =  𝐴  ∧  ( 𝑊 ‘ 1 )  =  ( 𝑊 ‘ 1 )  ∧  ( 𝑊 ‘ 2 )  =  𝐶 ) ) ) ) | 
						
							| 37 | 16 22 36 | mpbir2and | ⊢ ( ( ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  3 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝐴  ∧  ( 𝑊 ‘ 2 )  =  𝐶 )  ∧  ( 𝐴  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  ∧  ( 𝑊 ‘ 1 )  ∈  ( Vtx ‘ 𝐺 ) )  →  𝑊  =  〈“ 𝐴 ( 𝑊 ‘ 1 ) 𝐶 ”〉 ) | 
						
							| 38 | 37 33 | jca | ⊢ ( ( ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  3 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝐴  ∧  ( 𝑊 ‘ 2 )  =  𝐶 )  ∧  ( 𝐴  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  ∧  ( 𝑊 ‘ 1 )  ∈  ( Vtx ‘ 𝐺 ) )  →  ( 𝑊  =  〈“ 𝐴 ( 𝑊 ‘ 1 ) 𝐶 ”〉  ∧  ( 𝑊 ‘ 1 )  ∈  𝑉 ) ) | 
						
							| 39 | 15 38 | mpdan | ⊢ ( ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  3 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝐴  ∧  ( 𝑊 ‘ 2 )  =  𝐶 )  ∧  ( 𝐴  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  →  ( 𝑊  =  〈“ 𝐴 ( 𝑊 ‘ 1 ) 𝐶 ”〉  ∧  ( 𝑊 ‘ 1 )  ∈  𝑉 ) ) | 
						
							| 40 | 39 | 3exp | ⊢ ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  3 )  →  ( ( ( 𝑊 ‘ 0 )  =  𝐴  ∧  ( 𝑊 ‘ 2 )  =  𝐶 )  →  ( ( 𝐴  ∈  𝑉  ∧  𝐶  ∈  𝑉 )  →  ( 𝑊  =  〈“ 𝐴 ( 𝑊 ‘ 1 ) 𝐶 ”〉  ∧  ( 𝑊 ‘ 1 )  ∈  𝑉 ) ) ) ) | 
						
							| 41 | 6 40 | sylan2b | ⊢ ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( 2  +  1 ) )  →  ( ( ( 𝑊 ‘ 0 )  =  𝐴  ∧  ( 𝑊 ‘ 2 )  =  𝐶 )  →  ( ( 𝐴  ∈  𝑉  ∧  𝐶  ∈  𝑉 )  →  ( 𝑊  =  〈“ 𝐴 ( 𝑊 ‘ 1 ) 𝐶 ”〉  ∧  ( 𝑊 ‘ 1 )  ∈  𝑉 ) ) ) ) | 
						
							| 42 | 41 | 3adant1 | ⊢ ( ( 2  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( 2  +  1 ) )  →  ( ( ( 𝑊 ‘ 0 )  =  𝐴  ∧  ( 𝑊 ‘ 2 )  =  𝐶 )  →  ( ( 𝐴  ∈  𝑉  ∧  𝐶  ∈  𝑉 )  →  ( 𝑊  =  〈“ 𝐴 ( 𝑊 ‘ 1 ) 𝐶 ”〉  ∧  ( 𝑊 ‘ 1 )  ∈  𝑉 ) ) ) ) | 
						
							| 43 | 4 42 | syl | ⊢ ( 𝑊  ∈  ( 2  WWalksN  𝐺 )  →  ( ( ( 𝑊 ‘ 0 )  =  𝐴  ∧  ( 𝑊 ‘ 2 )  =  𝐶 )  →  ( ( 𝐴  ∈  𝑉  ∧  𝐶  ∈  𝑉 )  →  ( 𝑊  =  〈“ 𝐴 ( 𝑊 ‘ 1 ) 𝐶 ”〉  ∧  ( 𝑊 ‘ 1 )  ∈  𝑉 ) ) ) ) | 
						
							| 44 | 43 | 3impib | ⊢ ( ( 𝑊  ∈  ( 2  WWalksN  𝐺 )  ∧  ( 𝑊 ‘ 0 )  =  𝐴  ∧  ( 𝑊 ‘ 2 )  =  𝐶 )  →  ( ( 𝐴  ∈  𝑉  ∧  𝐶  ∈  𝑉 )  →  ( 𝑊  =  〈“ 𝐴 ( 𝑊 ‘ 1 ) 𝐶 ”〉  ∧  ( 𝑊 ‘ 1 )  ∈  𝑉 ) ) ) | 
						
							| 45 | 3 44 | sylbi | ⊢ ( 𝑊  ∈  ( 𝐴 ( 2  WWalksNOn  𝐺 ) 𝐶 )  →  ( ( 𝐴  ∈  𝑉  ∧  𝐶  ∈  𝑉 )  →  ( 𝑊  =  〈“ 𝐴 ( 𝑊 ‘ 1 ) 𝐶 ”〉  ∧  ( 𝑊 ‘ 1 )  ∈  𝑉 ) ) ) | 
						
							| 46 | 2 45 | mpd | ⊢ ( 𝑊  ∈  ( 𝐴 ( 2  WWalksNOn  𝐺 ) 𝐶 )  →  ( 𝑊  =  〈“ 𝐴 ( 𝑊 ‘ 1 ) 𝐶 ”〉  ∧  ( 𝑊 ‘ 1 )  ∈  𝑉 ) ) |