| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frgrhash2wsp.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | 2nn |  |-  2 e. NN | 
						
							| 3 | 1 | wspniunwspnon |  |-  ( ( 2 e. NN /\ G e. FriendGraph ) -> ( 2 WSPathsN G ) = U_ a e. V U_ b e. ( V \ { a } ) ( a ( 2 WSPathsNOn G ) b ) ) | 
						
							| 4 | 2 3 | mpan |  |-  ( G e. FriendGraph -> ( 2 WSPathsN G ) = U_ a e. V U_ b e. ( V \ { a } ) ( a ( 2 WSPathsNOn G ) b ) ) | 
						
							| 5 | 4 | fveq2d |  |-  ( G e. FriendGraph -> ( # ` ( 2 WSPathsN G ) ) = ( # ` U_ a e. V U_ b e. ( V \ { a } ) ( a ( 2 WSPathsNOn G ) b ) ) ) | 
						
							| 6 | 5 | adantr |  |-  ( ( G e. FriendGraph /\ V e. Fin ) -> ( # ` ( 2 WSPathsN G ) ) = ( # ` U_ a e. V U_ b e. ( V \ { a } ) ( a ( 2 WSPathsNOn G ) b ) ) ) | 
						
							| 7 |  | simpr |  |-  ( ( G e. FriendGraph /\ V e. Fin ) -> V e. Fin ) | 
						
							| 8 |  | eqid |  |-  ( V \ { a } ) = ( V \ { a } ) | 
						
							| 9 | 1 | eleq1i |  |-  ( V e. Fin <-> ( Vtx ` G ) e. Fin ) | 
						
							| 10 |  | wspthnonfi |  |-  ( ( Vtx ` G ) e. Fin -> ( a ( 2 WSPathsNOn G ) b ) e. Fin ) | 
						
							| 11 | 9 10 | sylbi |  |-  ( V e. Fin -> ( a ( 2 WSPathsNOn G ) b ) e. Fin ) | 
						
							| 12 | 11 | adantl |  |-  ( ( G e. FriendGraph /\ V e. Fin ) -> ( a ( 2 WSPathsNOn G ) b ) e. Fin ) | 
						
							| 13 | 12 | 3ad2ant1 |  |-  ( ( ( G e. FriendGraph /\ V e. Fin ) /\ a e. V /\ b e. ( V \ { a } ) ) -> ( a ( 2 WSPathsNOn G ) b ) e. Fin ) | 
						
							| 14 |  | 2wspiundisj |  |-  Disj_ a e. V U_ b e. ( V \ { a } ) ( a ( 2 WSPathsNOn G ) b ) | 
						
							| 15 | 14 | a1i |  |-  ( ( G e. FriendGraph /\ V e. Fin ) -> Disj_ a e. V U_ b e. ( V \ { a } ) ( a ( 2 WSPathsNOn G ) b ) ) | 
						
							| 16 |  | 2wspdisj |  |-  Disj_ b e. ( V \ { a } ) ( a ( 2 WSPathsNOn G ) b ) | 
						
							| 17 | 16 | a1i |  |-  ( ( ( G e. FriendGraph /\ V e. Fin ) /\ a e. V ) -> Disj_ b e. ( V \ { a } ) ( a ( 2 WSPathsNOn G ) b ) ) | 
						
							| 18 |  | simplll |  |-  ( ( ( ( G e. FriendGraph /\ V e. Fin ) /\ a e. V ) /\ b e. ( V \ { a } ) ) -> G e. FriendGraph ) | 
						
							| 19 |  | simpr |  |-  ( ( ( G e. FriendGraph /\ V e. Fin ) /\ a e. V ) -> a e. V ) | 
						
							| 20 |  | eldifi |  |-  ( b e. ( V \ { a } ) -> b e. V ) | 
						
							| 21 | 19 20 | anim12i |  |-  ( ( ( ( G e. FriendGraph /\ V e. Fin ) /\ a e. V ) /\ b e. ( V \ { a } ) ) -> ( a e. V /\ b e. V ) ) | 
						
							| 22 |  | eldifsni |  |-  ( b e. ( V \ { a } ) -> b =/= a ) | 
						
							| 23 | 22 | necomd |  |-  ( b e. ( V \ { a } ) -> a =/= b ) | 
						
							| 24 | 23 | adantl |  |-  ( ( ( ( G e. FriendGraph /\ V e. Fin ) /\ a e. V ) /\ b e. ( V \ { a } ) ) -> a =/= b ) | 
						
							| 25 | 1 | frgr2wsp1 |  |-  ( ( G e. FriendGraph /\ ( a e. V /\ b e. V ) /\ a =/= b ) -> ( # ` ( a ( 2 WSPathsNOn G ) b ) ) = 1 ) | 
						
							| 26 | 18 21 24 25 | syl3anc |  |-  ( ( ( ( G e. FriendGraph /\ V e. Fin ) /\ a e. V ) /\ b e. ( V \ { a } ) ) -> ( # ` ( a ( 2 WSPathsNOn G ) b ) ) = 1 ) | 
						
							| 27 | 26 | 3impa |  |-  ( ( ( G e. FriendGraph /\ V e. Fin ) /\ a e. V /\ b e. ( V \ { a } ) ) -> ( # ` ( a ( 2 WSPathsNOn G ) b ) ) = 1 ) | 
						
							| 28 | 7 8 13 15 17 27 | hash2iun1dif1 |  |-  ( ( G e. FriendGraph /\ V e. Fin ) -> ( # ` U_ a e. V U_ b e. ( V \ { a } ) ( a ( 2 WSPathsNOn G ) b ) ) = ( ( # ` V ) x. ( ( # ` V ) - 1 ) ) ) | 
						
							| 29 | 6 28 | eqtrd |  |-  ( ( G e. FriendGraph /\ V e. Fin ) -> ( # ` ( 2 WSPathsN G ) ) = ( ( # ` V ) x. ( ( # ` V ) - 1 ) ) ) |