| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frgrhash2wsp.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | fusgreg2wsp.m |  |-  M = ( a e. V |-> { w e. ( 2 WSPathsN G ) | ( w ` 1 ) = a } ) | 
						
							| 3 |  | eqeq2 |  |-  ( a = N -> ( ( w ` 1 ) = a <-> ( w ` 1 ) = N ) ) | 
						
							| 4 | 3 | rabbidv |  |-  ( a = N -> { w e. ( 2 WSPathsN G ) | ( w ` 1 ) = a } = { w e. ( 2 WSPathsN G ) | ( w ` 1 ) = N } ) | 
						
							| 5 |  | ovex |  |-  ( 2 WSPathsN G ) e. _V | 
						
							| 6 | 5 | rabex |  |-  { w e. ( 2 WSPathsN G ) | ( w ` 1 ) = N } e. _V | 
						
							| 7 | 4 2 6 | fvmpt |  |-  ( N e. V -> ( M ` N ) = { w e. ( 2 WSPathsN G ) | ( w ` 1 ) = N } ) | 
						
							| 8 | 7 | eleq2d |  |-  ( N e. V -> ( p e. ( M ` N ) <-> p e. { w e. ( 2 WSPathsN G ) | ( w ` 1 ) = N } ) ) | 
						
							| 9 |  | fveq1 |  |-  ( w = p -> ( w ` 1 ) = ( p ` 1 ) ) | 
						
							| 10 | 9 | eqeq1d |  |-  ( w = p -> ( ( w ` 1 ) = N <-> ( p ` 1 ) = N ) ) | 
						
							| 11 | 10 | elrab |  |-  ( p e. { w e. ( 2 WSPathsN G ) | ( w ` 1 ) = N } <-> ( p e. ( 2 WSPathsN G ) /\ ( p ` 1 ) = N ) ) | 
						
							| 12 | 8 11 | bitrdi |  |-  ( N e. V -> ( p e. ( M ` N ) <-> ( p e. ( 2 WSPathsN G ) /\ ( p ` 1 ) = N ) ) ) |