| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frgrhash2wsp.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | fusgreg2wsp.m | ⊢ 𝑀  =  ( 𝑎  ∈  𝑉  ↦  { 𝑤  ∈  ( 2  WSPathsN  𝐺 )  ∣  ( 𝑤 ‘ 1 )  =  𝑎 } ) | 
						
							| 3 |  | eqeq2 | ⊢ ( 𝑎  =  𝑁  →  ( ( 𝑤 ‘ 1 )  =  𝑎  ↔  ( 𝑤 ‘ 1 )  =  𝑁 ) ) | 
						
							| 4 | 3 | rabbidv | ⊢ ( 𝑎  =  𝑁  →  { 𝑤  ∈  ( 2  WSPathsN  𝐺 )  ∣  ( 𝑤 ‘ 1 )  =  𝑎 }  =  { 𝑤  ∈  ( 2  WSPathsN  𝐺 )  ∣  ( 𝑤 ‘ 1 )  =  𝑁 } ) | 
						
							| 5 |  | ovex | ⊢ ( 2  WSPathsN  𝐺 )  ∈  V | 
						
							| 6 | 5 | rabex | ⊢ { 𝑤  ∈  ( 2  WSPathsN  𝐺 )  ∣  ( 𝑤 ‘ 1 )  =  𝑁 }  ∈  V | 
						
							| 7 | 4 2 6 | fvmpt | ⊢ ( 𝑁  ∈  𝑉  →  ( 𝑀 ‘ 𝑁 )  =  { 𝑤  ∈  ( 2  WSPathsN  𝐺 )  ∣  ( 𝑤 ‘ 1 )  =  𝑁 } ) | 
						
							| 8 | 7 | eleq2d | ⊢ ( 𝑁  ∈  𝑉  →  ( 𝑝  ∈  ( 𝑀 ‘ 𝑁 )  ↔  𝑝  ∈  { 𝑤  ∈  ( 2  WSPathsN  𝐺 )  ∣  ( 𝑤 ‘ 1 )  =  𝑁 } ) ) | 
						
							| 9 |  | fveq1 | ⊢ ( 𝑤  =  𝑝  →  ( 𝑤 ‘ 1 )  =  ( 𝑝 ‘ 1 ) ) | 
						
							| 10 | 9 | eqeq1d | ⊢ ( 𝑤  =  𝑝  →  ( ( 𝑤 ‘ 1 )  =  𝑁  ↔  ( 𝑝 ‘ 1 )  =  𝑁 ) ) | 
						
							| 11 | 10 | elrab | ⊢ ( 𝑝  ∈  { 𝑤  ∈  ( 2  WSPathsN  𝐺 )  ∣  ( 𝑤 ‘ 1 )  =  𝑁 }  ↔  ( 𝑝  ∈  ( 2  WSPathsN  𝐺 )  ∧  ( 𝑝 ‘ 1 )  =  𝑁 ) ) | 
						
							| 12 | 8 11 | bitrdi | ⊢ ( 𝑁  ∈  𝑉  →  ( 𝑝  ∈  ( 𝑀 ‘ 𝑁 )  ↔  ( 𝑝  ∈  ( 2  WSPathsN  𝐺 )  ∧  ( 𝑝 ‘ 1 )  =  𝑁 ) ) ) |