| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frgrhash2wsp.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | fusgreg2wsp.m | ⊢ 𝑀  =  ( 𝑎  ∈  𝑉  ↦  { 𝑤  ∈  ( 2  WSPathsN  𝐺 )  ∣  ( 𝑤 ‘ 1 )  =  𝑎 } ) | 
						
							| 3 |  | wspthsswwlkn | ⊢ ( 2  WSPathsN  𝐺 )  ⊆  ( 2  WWalksN  𝐺 ) | 
						
							| 4 | 3 | sseli | ⊢ ( 𝑝  ∈  ( 2  WSPathsN  𝐺 )  →  𝑝  ∈  ( 2  WWalksN  𝐺 ) ) | 
						
							| 5 | 1 | midwwlks2s3 | ⊢ ( 𝑝  ∈  ( 2  WWalksN  𝐺 )  →  ∃ 𝑥  ∈  𝑉 ( 𝑝 ‘ 1 )  =  𝑥 ) | 
						
							| 6 | 4 5 | syl | ⊢ ( 𝑝  ∈  ( 2  WSPathsN  𝐺 )  →  ∃ 𝑥  ∈  𝑉 ( 𝑝 ‘ 1 )  =  𝑥 ) | 
						
							| 7 | 6 | a1i | ⊢ ( 𝐺  ∈  FinUSGraph  →  ( 𝑝  ∈  ( 2  WSPathsN  𝐺 )  →  ∃ 𝑥  ∈  𝑉 ( 𝑝 ‘ 1 )  =  𝑥 ) ) | 
						
							| 8 | 7 | pm4.71rd | ⊢ ( 𝐺  ∈  FinUSGraph  →  ( 𝑝  ∈  ( 2  WSPathsN  𝐺 )  ↔  ( ∃ 𝑥  ∈  𝑉 ( 𝑝 ‘ 1 )  =  𝑥  ∧  𝑝  ∈  ( 2  WSPathsN  𝐺 ) ) ) ) | 
						
							| 9 |  | ancom | ⊢ ( ( 𝑝  ∈  ( 2  WSPathsN  𝐺 )  ∧  ( 𝑝 ‘ 1 )  =  𝑥 )  ↔  ( ( 𝑝 ‘ 1 )  =  𝑥  ∧  𝑝  ∈  ( 2  WSPathsN  𝐺 ) ) ) | 
						
							| 10 | 9 | rexbii | ⊢ ( ∃ 𝑥  ∈  𝑉 ( 𝑝  ∈  ( 2  WSPathsN  𝐺 )  ∧  ( 𝑝 ‘ 1 )  =  𝑥 )  ↔  ∃ 𝑥  ∈  𝑉 ( ( 𝑝 ‘ 1 )  =  𝑥  ∧  𝑝  ∈  ( 2  WSPathsN  𝐺 ) ) ) | 
						
							| 11 |  | r19.41v | ⊢ ( ∃ 𝑥  ∈  𝑉 ( ( 𝑝 ‘ 1 )  =  𝑥  ∧  𝑝  ∈  ( 2  WSPathsN  𝐺 ) )  ↔  ( ∃ 𝑥  ∈  𝑉 ( 𝑝 ‘ 1 )  =  𝑥  ∧  𝑝  ∈  ( 2  WSPathsN  𝐺 ) ) ) | 
						
							| 12 | 10 11 | bitr2i | ⊢ ( ( ∃ 𝑥  ∈  𝑉 ( 𝑝 ‘ 1 )  =  𝑥  ∧  𝑝  ∈  ( 2  WSPathsN  𝐺 ) )  ↔  ∃ 𝑥  ∈  𝑉 ( 𝑝  ∈  ( 2  WSPathsN  𝐺 )  ∧  ( 𝑝 ‘ 1 )  =  𝑥 ) ) | 
						
							| 13 | 12 | a1i | ⊢ ( 𝐺  ∈  FinUSGraph  →  ( ( ∃ 𝑥  ∈  𝑉 ( 𝑝 ‘ 1 )  =  𝑥  ∧  𝑝  ∈  ( 2  WSPathsN  𝐺 ) )  ↔  ∃ 𝑥  ∈  𝑉 ( 𝑝  ∈  ( 2  WSPathsN  𝐺 )  ∧  ( 𝑝 ‘ 1 )  =  𝑥 ) ) ) | 
						
							| 14 | 1 2 | fusgreg2wsplem | ⊢ ( 𝑥  ∈  𝑉  →  ( 𝑝  ∈  ( 𝑀 ‘ 𝑥 )  ↔  ( 𝑝  ∈  ( 2  WSPathsN  𝐺 )  ∧  ( 𝑝 ‘ 1 )  =  𝑥 ) ) ) | 
						
							| 15 | 14 | bicomd | ⊢ ( 𝑥  ∈  𝑉  →  ( ( 𝑝  ∈  ( 2  WSPathsN  𝐺 )  ∧  ( 𝑝 ‘ 1 )  =  𝑥 )  ↔  𝑝  ∈  ( 𝑀 ‘ 𝑥 ) ) ) | 
						
							| 16 | 15 | adantl | ⊢ ( ( 𝐺  ∈  FinUSGraph  ∧  𝑥  ∈  𝑉 )  →  ( ( 𝑝  ∈  ( 2  WSPathsN  𝐺 )  ∧  ( 𝑝 ‘ 1 )  =  𝑥 )  ↔  𝑝  ∈  ( 𝑀 ‘ 𝑥 ) ) ) | 
						
							| 17 | 16 | rexbidva | ⊢ ( 𝐺  ∈  FinUSGraph  →  ( ∃ 𝑥  ∈  𝑉 ( 𝑝  ∈  ( 2  WSPathsN  𝐺 )  ∧  ( 𝑝 ‘ 1 )  =  𝑥 )  ↔  ∃ 𝑥  ∈  𝑉 𝑝  ∈  ( 𝑀 ‘ 𝑥 ) ) ) | 
						
							| 18 | 8 13 17 | 3bitrd | ⊢ ( 𝐺  ∈  FinUSGraph  →  ( 𝑝  ∈  ( 2  WSPathsN  𝐺 )  ↔  ∃ 𝑥  ∈  𝑉 𝑝  ∈  ( 𝑀 ‘ 𝑥 ) ) ) | 
						
							| 19 |  | eliun | ⊢ ( 𝑝  ∈  ∪  𝑥  ∈  𝑉 ( 𝑀 ‘ 𝑥 )  ↔  ∃ 𝑥  ∈  𝑉 𝑝  ∈  ( 𝑀 ‘ 𝑥 ) ) | 
						
							| 20 | 18 19 | bitr4di | ⊢ ( 𝐺  ∈  FinUSGraph  →  ( 𝑝  ∈  ( 2  WSPathsN  𝐺 )  ↔  𝑝  ∈  ∪  𝑥  ∈  𝑉 ( 𝑀 ‘ 𝑥 ) ) ) | 
						
							| 21 | 20 | eqrdv | ⊢ ( 𝐺  ∈  FinUSGraph  →  ( 2  WSPathsN  𝐺 )  =  ∪  𝑥  ∈  𝑉 ( 𝑀 ‘ 𝑥 ) ) |