| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frgrhash2wsp.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | fusgreg2wsp.m |  |-  M = ( a e. V |-> { w e. ( 2 WSPathsN G ) | ( w ` 1 ) = a } ) | 
						
							| 3 |  | wspthsswwlkn |  |-  ( 2 WSPathsN G ) C_ ( 2 WWalksN G ) | 
						
							| 4 | 3 | sseli |  |-  ( p e. ( 2 WSPathsN G ) -> p e. ( 2 WWalksN G ) ) | 
						
							| 5 | 1 | midwwlks2s3 |  |-  ( p e. ( 2 WWalksN G ) -> E. x e. V ( p ` 1 ) = x ) | 
						
							| 6 | 4 5 | syl |  |-  ( p e. ( 2 WSPathsN G ) -> E. x e. V ( p ` 1 ) = x ) | 
						
							| 7 | 6 | a1i |  |-  ( G e. FinUSGraph -> ( p e. ( 2 WSPathsN G ) -> E. x e. V ( p ` 1 ) = x ) ) | 
						
							| 8 | 7 | pm4.71rd |  |-  ( G e. FinUSGraph -> ( p e. ( 2 WSPathsN G ) <-> ( E. x e. V ( p ` 1 ) = x /\ p e. ( 2 WSPathsN G ) ) ) ) | 
						
							| 9 |  | ancom |  |-  ( ( p e. ( 2 WSPathsN G ) /\ ( p ` 1 ) = x ) <-> ( ( p ` 1 ) = x /\ p e. ( 2 WSPathsN G ) ) ) | 
						
							| 10 | 9 | rexbii |  |-  ( E. x e. V ( p e. ( 2 WSPathsN G ) /\ ( p ` 1 ) = x ) <-> E. x e. V ( ( p ` 1 ) = x /\ p e. ( 2 WSPathsN G ) ) ) | 
						
							| 11 |  | r19.41v |  |-  ( E. x e. V ( ( p ` 1 ) = x /\ p e. ( 2 WSPathsN G ) ) <-> ( E. x e. V ( p ` 1 ) = x /\ p e. ( 2 WSPathsN G ) ) ) | 
						
							| 12 | 10 11 | bitr2i |  |-  ( ( E. x e. V ( p ` 1 ) = x /\ p e. ( 2 WSPathsN G ) ) <-> E. x e. V ( p e. ( 2 WSPathsN G ) /\ ( p ` 1 ) = x ) ) | 
						
							| 13 | 12 | a1i |  |-  ( G e. FinUSGraph -> ( ( E. x e. V ( p ` 1 ) = x /\ p e. ( 2 WSPathsN G ) ) <-> E. x e. V ( p e. ( 2 WSPathsN G ) /\ ( p ` 1 ) = x ) ) ) | 
						
							| 14 | 1 2 | fusgreg2wsplem |  |-  ( x e. V -> ( p e. ( M ` x ) <-> ( p e. ( 2 WSPathsN G ) /\ ( p ` 1 ) = x ) ) ) | 
						
							| 15 | 14 | bicomd |  |-  ( x e. V -> ( ( p e. ( 2 WSPathsN G ) /\ ( p ` 1 ) = x ) <-> p e. ( M ` x ) ) ) | 
						
							| 16 | 15 | adantl |  |-  ( ( G e. FinUSGraph /\ x e. V ) -> ( ( p e. ( 2 WSPathsN G ) /\ ( p ` 1 ) = x ) <-> p e. ( M ` x ) ) ) | 
						
							| 17 | 16 | rexbidva |  |-  ( G e. FinUSGraph -> ( E. x e. V ( p e. ( 2 WSPathsN G ) /\ ( p ` 1 ) = x ) <-> E. x e. V p e. ( M ` x ) ) ) | 
						
							| 18 | 8 13 17 | 3bitrd |  |-  ( G e. FinUSGraph -> ( p e. ( 2 WSPathsN G ) <-> E. x e. V p e. ( M ` x ) ) ) | 
						
							| 19 |  | eliun |  |-  ( p e. U_ x e. V ( M ` x ) <-> E. x e. V p e. ( M ` x ) ) | 
						
							| 20 | 18 19 | bitr4di |  |-  ( G e. FinUSGraph -> ( p e. ( 2 WSPathsN G ) <-> p e. U_ x e. V ( M ` x ) ) ) | 
						
							| 21 | 20 | eqrdv |  |-  ( G e. FinUSGraph -> ( 2 WSPathsN G ) = U_ x e. V ( M ` x ) ) |