| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elwwlks2s3.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 | 1 | elwwlks2s3 |  |-  ( W e. ( 2 WWalksN G ) -> E. a e. V E. b e. V E. c e. V W = <" a b c "> ) | 
						
							| 3 |  | fveq1 |  |-  ( W = <" a b c "> -> ( W ` 1 ) = ( <" a b c "> ` 1 ) ) | 
						
							| 4 |  | s3fv1 |  |-  ( b e. V -> ( <" a b c "> ` 1 ) = b ) | 
						
							| 5 | 3 4 | sylan9eqr |  |-  ( ( b e. V /\ W = <" a b c "> ) -> ( W ` 1 ) = b ) | 
						
							| 6 | 5 | ex |  |-  ( b e. V -> ( W = <" a b c "> -> ( W ` 1 ) = b ) ) | 
						
							| 7 | 6 | adantl |  |-  ( ( a e. V /\ b e. V ) -> ( W = <" a b c "> -> ( W ` 1 ) = b ) ) | 
						
							| 8 | 7 | rexlimdvw |  |-  ( ( a e. V /\ b e. V ) -> ( E. c e. V W = <" a b c "> -> ( W ` 1 ) = b ) ) | 
						
							| 9 | 8 | reximdva |  |-  ( a e. V -> ( E. b e. V E. c e. V W = <" a b c "> -> E. b e. V ( W ` 1 ) = b ) ) | 
						
							| 10 | 9 | rexlimiv |  |-  ( E. a e. V E. b e. V E. c e. V W = <" a b c "> -> E. b e. V ( W ` 1 ) = b ) | 
						
							| 11 | 2 10 | syl |  |-  ( W e. ( 2 WWalksN G ) -> E. b e. V ( W ` 1 ) = b ) |