Metamath Proof Explorer


Theorem midwwlks2s3

Description: There is a vertex between the endpoints of a walk of length 2 between two vertices as length 3 string. (Contributed by AV, 10-Jan-2022)

Ref Expression
Hypothesis elwwlks2s3.v V=VtxG
Assertion midwwlks2s3 W2WWalksNGbVW1=b

Proof

Step Hyp Ref Expression
1 elwwlks2s3.v V=VtxG
2 1 elwwlks2s3 W2WWalksNGaVbVcVW=⟨“abc”⟩
3 fveq1 W=⟨“abc”⟩W1=⟨“abc”⟩1
4 s3fv1 bV⟨“abc”⟩1=b
5 3 4 sylan9eqr bVW=⟨“abc”⟩W1=b
6 5 ex bVW=⟨“abc”⟩W1=b
7 6 adantl aVbVW=⟨“abc”⟩W1=b
8 7 rexlimdvw aVbVcVW=⟨“abc”⟩W1=b
9 8 reximdva aVbVcVW=⟨“abc”⟩bVW1=b
10 9 rexlimiv aVbVcVW=⟨“abc”⟩bVW1=b
11 2 10 syl W2WWalksNGbVW1=b