| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frgrhash2wsp.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | fusgreg2wsp.m | ⊢ 𝑀  =  ( 𝑎  ∈  𝑉  ↦  { 𝑤  ∈  ( 2  WSPathsN  𝐺 )  ∣  ( 𝑤 ‘ 1 )  =  𝑎 } ) | 
						
							| 3 |  | orc | ⊢ ( 𝑥  =  𝑦  →  ( 𝑥  =  𝑦  ∨  ( ( 𝑀 ‘ 𝑥 )  ∩  ( 𝑀 ‘ 𝑦 ) )  =  ∅ ) ) | 
						
							| 4 | 3 | a1d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝑥  ∈  𝑉  ∧  𝑦  ∈  𝑉 )  →  ( 𝑥  =  𝑦  ∨  ( ( 𝑀 ‘ 𝑥 )  ∩  ( 𝑀 ‘ 𝑦 ) )  =  ∅ ) ) ) | 
						
							| 5 | 1 2 | fusgreg2wsplem | ⊢ ( 𝑦  ∈  𝑉  →  ( 𝑡  ∈  ( 𝑀 ‘ 𝑦 )  ↔  ( 𝑡  ∈  ( 2  WSPathsN  𝐺 )  ∧  ( 𝑡 ‘ 1 )  =  𝑦 ) ) ) | 
						
							| 6 | 5 | adantl | ⊢ ( ( 𝑥  ∈  𝑉  ∧  𝑦  ∈  𝑉 )  →  ( 𝑡  ∈  ( 𝑀 ‘ 𝑦 )  ↔  ( 𝑡  ∈  ( 2  WSPathsN  𝐺 )  ∧  ( 𝑡 ‘ 1 )  =  𝑦 ) ) ) | 
						
							| 7 | 6 | adantr | ⊢ ( ( ( 𝑥  ∈  𝑉  ∧  𝑦  ∈  𝑉 )  ∧  𝑡  ∈  ( 𝑀 ‘ 𝑥 ) )  →  ( 𝑡  ∈  ( 𝑀 ‘ 𝑦 )  ↔  ( 𝑡  ∈  ( 2  WSPathsN  𝐺 )  ∧  ( 𝑡 ‘ 1 )  =  𝑦 ) ) ) | 
						
							| 8 | 1 2 | fusgreg2wsplem | ⊢ ( 𝑥  ∈  𝑉  →  ( 𝑡  ∈  ( 𝑀 ‘ 𝑥 )  ↔  ( 𝑡  ∈  ( 2  WSPathsN  𝐺 )  ∧  ( 𝑡 ‘ 1 )  =  𝑥 ) ) ) | 
						
							| 9 |  | eqtr2 | ⊢ ( ( ( 𝑡 ‘ 1 )  =  𝑥  ∧  ( 𝑡 ‘ 1 )  =  𝑦 )  →  𝑥  =  𝑦 ) | 
						
							| 10 | 9 | expcom | ⊢ ( ( 𝑡 ‘ 1 )  =  𝑦  →  ( ( 𝑡 ‘ 1 )  =  𝑥  →  𝑥  =  𝑦 ) ) | 
						
							| 11 | 10 | adantl | ⊢ ( ( 𝑡  ∈  ( 2  WSPathsN  𝐺 )  ∧  ( 𝑡 ‘ 1 )  =  𝑦 )  →  ( ( 𝑡 ‘ 1 )  =  𝑥  →  𝑥  =  𝑦 ) ) | 
						
							| 12 | 11 | com12 | ⊢ ( ( 𝑡 ‘ 1 )  =  𝑥  →  ( ( 𝑡  ∈  ( 2  WSPathsN  𝐺 )  ∧  ( 𝑡 ‘ 1 )  =  𝑦 )  →  𝑥  =  𝑦 ) ) | 
						
							| 13 | 12 | adantl | ⊢ ( ( 𝑡  ∈  ( 2  WSPathsN  𝐺 )  ∧  ( 𝑡 ‘ 1 )  =  𝑥 )  →  ( ( 𝑡  ∈  ( 2  WSPathsN  𝐺 )  ∧  ( 𝑡 ‘ 1 )  =  𝑦 )  →  𝑥  =  𝑦 ) ) | 
						
							| 14 | 8 13 | biimtrdi | ⊢ ( 𝑥  ∈  𝑉  →  ( 𝑡  ∈  ( 𝑀 ‘ 𝑥 )  →  ( ( 𝑡  ∈  ( 2  WSPathsN  𝐺 )  ∧  ( 𝑡 ‘ 1 )  =  𝑦 )  →  𝑥  =  𝑦 ) ) ) | 
						
							| 15 | 14 | adantr | ⊢ ( ( 𝑥  ∈  𝑉  ∧  𝑦  ∈  𝑉 )  →  ( 𝑡  ∈  ( 𝑀 ‘ 𝑥 )  →  ( ( 𝑡  ∈  ( 2  WSPathsN  𝐺 )  ∧  ( 𝑡 ‘ 1 )  =  𝑦 )  →  𝑥  =  𝑦 ) ) ) | 
						
							| 16 | 15 | imp | ⊢ ( ( ( 𝑥  ∈  𝑉  ∧  𝑦  ∈  𝑉 )  ∧  𝑡  ∈  ( 𝑀 ‘ 𝑥 ) )  →  ( ( 𝑡  ∈  ( 2  WSPathsN  𝐺 )  ∧  ( 𝑡 ‘ 1 )  =  𝑦 )  →  𝑥  =  𝑦 ) ) | 
						
							| 17 | 7 16 | sylbid | ⊢ ( ( ( 𝑥  ∈  𝑉  ∧  𝑦  ∈  𝑉 )  ∧  𝑡  ∈  ( 𝑀 ‘ 𝑥 ) )  →  ( 𝑡  ∈  ( 𝑀 ‘ 𝑦 )  →  𝑥  =  𝑦 ) ) | 
						
							| 18 | 17 | con3d | ⊢ ( ( ( 𝑥  ∈  𝑉  ∧  𝑦  ∈  𝑉 )  ∧  𝑡  ∈  ( 𝑀 ‘ 𝑥 ) )  →  ( ¬  𝑥  =  𝑦  →  ¬  𝑡  ∈  ( 𝑀 ‘ 𝑦 ) ) ) | 
						
							| 19 | 18 | impancom | ⊢ ( ( ( 𝑥  ∈  𝑉  ∧  𝑦  ∈  𝑉 )  ∧  ¬  𝑥  =  𝑦 )  →  ( 𝑡  ∈  ( 𝑀 ‘ 𝑥 )  →  ¬  𝑡  ∈  ( 𝑀 ‘ 𝑦 ) ) ) | 
						
							| 20 | 19 | ralrimiv | ⊢ ( ( ( 𝑥  ∈  𝑉  ∧  𝑦  ∈  𝑉 )  ∧  ¬  𝑥  =  𝑦 )  →  ∀ 𝑡  ∈  ( 𝑀 ‘ 𝑥 ) ¬  𝑡  ∈  ( 𝑀 ‘ 𝑦 ) ) | 
						
							| 21 |  | disj | ⊢ ( ( ( 𝑀 ‘ 𝑥 )  ∩  ( 𝑀 ‘ 𝑦 ) )  =  ∅  ↔  ∀ 𝑡  ∈  ( 𝑀 ‘ 𝑥 ) ¬  𝑡  ∈  ( 𝑀 ‘ 𝑦 ) ) | 
						
							| 22 | 20 21 | sylibr | ⊢ ( ( ( 𝑥  ∈  𝑉  ∧  𝑦  ∈  𝑉 )  ∧  ¬  𝑥  =  𝑦 )  →  ( ( 𝑀 ‘ 𝑥 )  ∩  ( 𝑀 ‘ 𝑦 ) )  =  ∅ ) | 
						
							| 23 | 22 | olcd | ⊢ ( ( ( 𝑥  ∈  𝑉  ∧  𝑦  ∈  𝑉 )  ∧  ¬  𝑥  =  𝑦 )  →  ( 𝑥  =  𝑦  ∨  ( ( 𝑀 ‘ 𝑥 )  ∩  ( 𝑀 ‘ 𝑦 ) )  =  ∅ ) ) | 
						
							| 24 | 23 | expcom | ⊢ ( ¬  𝑥  =  𝑦  →  ( ( 𝑥  ∈  𝑉  ∧  𝑦  ∈  𝑉 )  →  ( 𝑥  =  𝑦  ∨  ( ( 𝑀 ‘ 𝑥 )  ∩  ( 𝑀 ‘ 𝑦 ) )  =  ∅ ) ) ) | 
						
							| 25 | 4 24 | pm2.61i | ⊢ ( ( 𝑥  ∈  𝑉  ∧  𝑦  ∈  𝑉 )  →  ( 𝑥  =  𝑦  ∨  ( ( 𝑀 ‘ 𝑥 )  ∩  ( 𝑀 ‘ 𝑦 ) )  =  ∅ ) ) | 
						
							| 26 | 25 | rgen2 | ⊢ ∀ 𝑥  ∈  𝑉 ∀ 𝑦  ∈  𝑉 ( 𝑥  =  𝑦  ∨  ( ( 𝑀 ‘ 𝑥 )  ∩  ( 𝑀 ‘ 𝑦 ) )  =  ∅ ) | 
						
							| 27 |  | fveq2 | ⊢ ( 𝑥  =  𝑦  →  ( 𝑀 ‘ 𝑥 )  =  ( 𝑀 ‘ 𝑦 ) ) | 
						
							| 28 | 27 | disjor | ⊢ ( Disj  𝑥  ∈  𝑉 ( 𝑀 ‘ 𝑥 )  ↔  ∀ 𝑥  ∈  𝑉 ∀ 𝑦  ∈  𝑉 ( 𝑥  =  𝑦  ∨  ( ( 𝑀 ‘ 𝑥 )  ∩  ( 𝑀 ‘ 𝑦 ) )  =  ∅ ) ) | 
						
							| 29 | 26 28 | mpbir | ⊢ Disj  𝑥  ∈  𝑉 ( 𝑀 ‘ 𝑥 ) |