| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fusgreghash2wsp.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | fveq1 | ⊢ ( 𝑠  =  𝑡  →  ( 𝑠 ‘ 1 )  =  ( 𝑡 ‘ 1 ) ) | 
						
							| 3 | 2 | eqeq1d | ⊢ ( 𝑠  =  𝑡  →  ( ( 𝑠 ‘ 1 )  =  𝑎  ↔  ( 𝑡 ‘ 1 )  =  𝑎 ) ) | 
						
							| 4 | 3 | cbvrabv | ⊢ { 𝑠  ∈  ( 2  WSPathsN  𝐺 )  ∣  ( 𝑠 ‘ 1 )  =  𝑎 }  =  { 𝑡  ∈  ( 2  WSPathsN  𝐺 )  ∣  ( 𝑡 ‘ 1 )  =  𝑎 } | 
						
							| 5 | 4 | mpteq2i | ⊢ ( 𝑎  ∈  𝑉  ↦  { 𝑠  ∈  ( 2  WSPathsN  𝐺 )  ∣  ( 𝑠 ‘ 1 )  =  𝑎 } )  =  ( 𝑎  ∈  𝑉  ↦  { 𝑡  ∈  ( 2  WSPathsN  𝐺 )  ∣  ( 𝑡 ‘ 1 )  =  𝑎 } ) | 
						
							| 6 | 1 5 | fusgreg2wsp | ⊢ ( 𝐺  ∈  FinUSGraph  →  ( 2  WSPathsN  𝐺 )  =  ∪  𝑦  ∈  𝑉 ( ( 𝑎  ∈  𝑉  ↦  { 𝑠  ∈  ( 2  WSPathsN  𝐺 )  ∣  ( 𝑠 ‘ 1 )  =  𝑎 } ) ‘ 𝑦 ) ) | 
						
							| 7 | 6 | ad2antrr | ⊢ ( ( ( 𝐺  ∈  FinUSGraph  ∧  𝑉  ≠  ∅ )  ∧  ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾 )  →  ( 2  WSPathsN  𝐺 )  =  ∪  𝑦  ∈  𝑉 ( ( 𝑎  ∈  𝑉  ↦  { 𝑠  ∈  ( 2  WSPathsN  𝐺 )  ∣  ( 𝑠 ‘ 1 )  =  𝑎 } ) ‘ 𝑦 ) ) | 
						
							| 8 | 7 | fveq2d | ⊢ ( ( ( 𝐺  ∈  FinUSGraph  ∧  𝑉  ≠  ∅ )  ∧  ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾 )  →  ( ♯ ‘ ( 2  WSPathsN  𝐺 ) )  =  ( ♯ ‘ ∪  𝑦  ∈  𝑉 ( ( 𝑎  ∈  𝑉  ↦  { 𝑠  ∈  ( 2  WSPathsN  𝐺 )  ∣  ( 𝑠 ‘ 1 )  =  𝑎 } ) ‘ 𝑦 ) ) ) | 
						
							| 9 | 1 | fusgrvtxfi | ⊢ ( 𝐺  ∈  FinUSGraph  →  𝑉  ∈  Fin ) | 
						
							| 10 |  | eqeq2 | ⊢ ( 𝑎  =  𝑦  →  ( ( 𝑠 ‘ 1 )  =  𝑎  ↔  ( 𝑠 ‘ 1 )  =  𝑦 ) ) | 
						
							| 11 | 10 | rabbidv | ⊢ ( 𝑎  =  𝑦  →  { 𝑠  ∈  ( 2  WSPathsN  𝐺 )  ∣  ( 𝑠 ‘ 1 )  =  𝑎 }  =  { 𝑠  ∈  ( 2  WSPathsN  𝐺 )  ∣  ( 𝑠 ‘ 1 )  =  𝑦 } ) | 
						
							| 12 |  | eqid | ⊢ ( 𝑎  ∈  𝑉  ↦  { 𝑠  ∈  ( 2  WSPathsN  𝐺 )  ∣  ( 𝑠 ‘ 1 )  =  𝑎 } )  =  ( 𝑎  ∈  𝑉  ↦  { 𝑠  ∈  ( 2  WSPathsN  𝐺 )  ∣  ( 𝑠 ‘ 1 )  =  𝑎 } ) | 
						
							| 13 |  | ovex | ⊢ ( 2  WSPathsN  𝐺 )  ∈  V | 
						
							| 14 | 13 | rabex | ⊢ { 𝑠  ∈  ( 2  WSPathsN  𝐺 )  ∣  ( 𝑠 ‘ 1 )  =  𝑦 }  ∈  V | 
						
							| 15 | 11 12 14 | fvmpt | ⊢ ( 𝑦  ∈  𝑉  →  ( ( 𝑎  ∈  𝑉  ↦  { 𝑠  ∈  ( 2  WSPathsN  𝐺 )  ∣  ( 𝑠 ‘ 1 )  =  𝑎 } ) ‘ 𝑦 )  =  { 𝑠  ∈  ( 2  WSPathsN  𝐺 )  ∣  ( 𝑠 ‘ 1 )  =  𝑦 } ) | 
						
							| 16 | 15 | adantl | ⊢ ( ( 𝐺  ∈  FinUSGraph  ∧  𝑦  ∈  𝑉 )  →  ( ( 𝑎  ∈  𝑉  ↦  { 𝑠  ∈  ( 2  WSPathsN  𝐺 )  ∣  ( 𝑠 ‘ 1 )  =  𝑎 } ) ‘ 𝑦 )  =  { 𝑠  ∈  ( 2  WSPathsN  𝐺 )  ∣  ( 𝑠 ‘ 1 )  =  𝑦 } ) | 
						
							| 17 |  | eqid | ⊢ ( Vtx ‘ 𝐺 )  =  ( Vtx ‘ 𝐺 ) | 
						
							| 18 | 17 | fusgrvtxfi | ⊢ ( 𝐺  ∈  FinUSGraph  →  ( Vtx ‘ 𝐺 )  ∈  Fin ) | 
						
							| 19 |  | wspthnfi | ⊢ ( ( Vtx ‘ 𝐺 )  ∈  Fin  →  ( 2  WSPathsN  𝐺 )  ∈  Fin ) | 
						
							| 20 |  | rabfi | ⊢ ( ( 2  WSPathsN  𝐺 )  ∈  Fin  →  { 𝑠  ∈  ( 2  WSPathsN  𝐺 )  ∣  ( 𝑠 ‘ 1 )  =  𝑦 }  ∈  Fin ) | 
						
							| 21 | 18 19 20 | 3syl | ⊢ ( 𝐺  ∈  FinUSGraph  →  { 𝑠  ∈  ( 2  WSPathsN  𝐺 )  ∣  ( 𝑠 ‘ 1 )  =  𝑦 }  ∈  Fin ) | 
						
							| 22 | 21 | adantr | ⊢ ( ( 𝐺  ∈  FinUSGraph  ∧  𝑦  ∈  𝑉 )  →  { 𝑠  ∈  ( 2  WSPathsN  𝐺 )  ∣  ( 𝑠 ‘ 1 )  =  𝑦 }  ∈  Fin ) | 
						
							| 23 | 16 22 | eqeltrd | ⊢ ( ( 𝐺  ∈  FinUSGraph  ∧  𝑦  ∈  𝑉 )  →  ( ( 𝑎  ∈  𝑉  ↦  { 𝑠  ∈  ( 2  WSPathsN  𝐺 )  ∣  ( 𝑠 ‘ 1 )  =  𝑎 } ) ‘ 𝑦 )  ∈  Fin ) | 
						
							| 24 | 1 5 | 2wspmdisj | ⊢ Disj  𝑦  ∈  𝑉 ( ( 𝑎  ∈  𝑉  ↦  { 𝑠  ∈  ( 2  WSPathsN  𝐺 )  ∣  ( 𝑠 ‘ 1 )  =  𝑎 } ) ‘ 𝑦 ) | 
						
							| 25 | 24 | a1i | ⊢ ( 𝐺  ∈  FinUSGraph  →  Disj  𝑦  ∈  𝑉 ( ( 𝑎  ∈  𝑉  ↦  { 𝑠  ∈  ( 2  WSPathsN  𝐺 )  ∣  ( 𝑠 ‘ 1 )  =  𝑎 } ) ‘ 𝑦 ) ) | 
						
							| 26 | 9 23 25 | hashiun | ⊢ ( 𝐺  ∈  FinUSGraph  →  ( ♯ ‘ ∪  𝑦  ∈  𝑉 ( ( 𝑎  ∈  𝑉  ↦  { 𝑠  ∈  ( 2  WSPathsN  𝐺 )  ∣  ( 𝑠 ‘ 1 )  =  𝑎 } ) ‘ 𝑦 ) )  =  Σ 𝑦  ∈  𝑉 ( ♯ ‘ ( ( 𝑎  ∈  𝑉  ↦  { 𝑠  ∈  ( 2  WSPathsN  𝐺 )  ∣  ( 𝑠 ‘ 1 )  =  𝑎 } ) ‘ 𝑦 ) ) ) | 
						
							| 27 | 26 | ad2antrr | ⊢ ( ( ( 𝐺  ∈  FinUSGraph  ∧  𝑉  ≠  ∅ )  ∧  ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾 )  →  ( ♯ ‘ ∪  𝑦  ∈  𝑉 ( ( 𝑎  ∈  𝑉  ↦  { 𝑠  ∈  ( 2  WSPathsN  𝐺 )  ∣  ( 𝑠 ‘ 1 )  =  𝑎 } ) ‘ 𝑦 ) )  =  Σ 𝑦  ∈  𝑉 ( ♯ ‘ ( ( 𝑎  ∈  𝑉  ↦  { 𝑠  ∈  ( 2  WSPathsN  𝐺 )  ∣  ( 𝑠 ‘ 1 )  =  𝑎 } ) ‘ 𝑦 ) ) ) | 
						
							| 28 | 1 5 | fusgreghash2wspv | ⊢ ( 𝐺  ∈  FinUSGraph  →  ∀ 𝑣  ∈  𝑉 ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾  →  ( ♯ ‘ ( ( 𝑎  ∈  𝑉  ↦  { 𝑠  ∈  ( 2  WSPathsN  𝐺 )  ∣  ( 𝑠 ‘ 1 )  =  𝑎 } ) ‘ 𝑣 ) )  =  ( 𝐾  ·  ( 𝐾  −  1 ) ) ) ) | 
						
							| 29 |  | ralim | ⊢ ( ∀ 𝑣  ∈  𝑉 ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾  →  ( ♯ ‘ ( ( 𝑎  ∈  𝑉  ↦  { 𝑠  ∈  ( 2  WSPathsN  𝐺 )  ∣  ( 𝑠 ‘ 1 )  =  𝑎 } ) ‘ 𝑣 ) )  =  ( 𝐾  ·  ( 𝐾  −  1 ) ) )  →  ( ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾  →  ∀ 𝑣  ∈  𝑉 ( ♯ ‘ ( ( 𝑎  ∈  𝑉  ↦  { 𝑠  ∈  ( 2  WSPathsN  𝐺 )  ∣  ( 𝑠 ‘ 1 )  =  𝑎 } ) ‘ 𝑣 ) )  =  ( 𝐾  ·  ( 𝐾  −  1 ) ) ) ) | 
						
							| 30 | 28 29 | syl | ⊢ ( 𝐺  ∈  FinUSGraph  →  ( ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾  →  ∀ 𝑣  ∈  𝑉 ( ♯ ‘ ( ( 𝑎  ∈  𝑉  ↦  { 𝑠  ∈  ( 2  WSPathsN  𝐺 )  ∣  ( 𝑠 ‘ 1 )  =  𝑎 } ) ‘ 𝑣 ) )  =  ( 𝐾  ·  ( 𝐾  −  1 ) ) ) ) | 
						
							| 31 | 30 | adantr | ⊢ ( ( 𝐺  ∈  FinUSGraph  ∧  𝑉  ≠  ∅ )  →  ( ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾  →  ∀ 𝑣  ∈  𝑉 ( ♯ ‘ ( ( 𝑎  ∈  𝑉  ↦  { 𝑠  ∈  ( 2  WSPathsN  𝐺 )  ∣  ( 𝑠 ‘ 1 )  =  𝑎 } ) ‘ 𝑣 ) )  =  ( 𝐾  ·  ( 𝐾  −  1 ) ) ) ) | 
						
							| 32 | 31 | imp | ⊢ ( ( ( 𝐺  ∈  FinUSGraph  ∧  𝑉  ≠  ∅ )  ∧  ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾 )  →  ∀ 𝑣  ∈  𝑉 ( ♯ ‘ ( ( 𝑎  ∈  𝑉  ↦  { 𝑠  ∈  ( 2  WSPathsN  𝐺 )  ∣  ( 𝑠 ‘ 1 )  =  𝑎 } ) ‘ 𝑣 ) )  =  ( 𝐾  ·  ( 𝐾  −  1 ) ) ) | 
						
							| 33 |  | 2fveq3 | ⊢ ( 𝑣  =  𝑦  →  ( ♯ ‘ ( ( 𝑎  ∈  𝑉  ↦  { 𝑠  ∈  ( 2  WSPathsN  𝐺 )  ∣  ( 𝑠 ‘ 1 )  =  𝑎 } ) ‘ 𝑣 ) )  =  ( ♯ ‘ ( ( 𝑎  ∈  𝑉  ↦  { 𝑠  ∈  ( 2  WSPathsN  𝐺 )  ∣  ( 𝑠 ‘ 1 )  =  𝑎 } ) ‘ 𝑦 ) ) ) | 
						
							| 34 | 33 | eqeq1d | ⊢ ( 𝑣  =  𝑦  →  ( ( ♯ ‘ ( ( 𝑎  ∈  𝑉  ↦  { 𝑠  ∈  ( 2  WSPathsN  𝐺 )  ∣  ( 𝑠 ‘ 1 )  =  𝑎 } ) ‘ 𝑣 ) )  =  ( 𝐾  ·  ( 𝐾  −  1 ) )  ↔  ( ♯ ‘ ( ( 𝑎  ∈  𝑉  ↦  { 𝑠  ∈  ( 2  WSPathsN  𝐺 )  ∣  ( 𝑠 ‘ 1 )  =  𝑎 } ) ‘ 𝑦 ) )  =  ( 𝐾  ·  ( 𝐾  −  1 ) ) ) ) | 
						
							| 35 | 34 | rspccva | ⊢ ( ( ∀ 𝑣  ∈  𝑉 ( ♯ ‘ ( ( 𝑎  ∈  𝑉  ↦  { 𝑠  ∈  ( 2  WSPathsN  𝐺 )  ∣  ( 𝑠 ‘ 1 )  =  𝑎 } ) ‘ 𝑣 ) )  =  ( 𝐾  ·  ( 𝐾  −  1 ) )  ∧  𝑦  ∈  𝑉 )  →  ( ♯ ‘ ( ( 𝑎  ∈  𝑉  ↦  { 𝑠  ∈  ( 2  WSPathsN  𝐺 )  ∣  ( 𝑠 ‘ 1 )  =  𝑎 } ) ‘ 𝑦 ) )  =  ( 𝐾  ·  ( 𝐾  −  1 ) ) ) | 
						
							| 36 | 32 35 | sylan | ⊢ ( ( ( ( 𝐺  ∈  FinUSGraph  ∧  𝑉  ≠  ∅ )  ∧  ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾 )  ∧  𝑦  ∈  𝑉 )  →  ( ♯ ‘ ( ( 𝑎  ∈  𝑉  ↦  { 𝑠  ∈  ( 2  WSPathsN  𝐺 )  ∣  ( 𝑠 ‘ 1 )  =  𝑎 } ) ‘ 𝑦 ) )  =  ( 𝐾  ·  ( 𝐾  −  1 ) ) ) | 
						
							| 37 | 36 | sumeq2dv | ⊢ ( ( ( 𝐺  ∈  FinUSGraph  ∧  𝑉  ≠  ∅ )  ∧  ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾 )  →  Σ 𝑦  ∈  𝑉 ( ♯ ‘ ( ( 𝑎  ∈  𝑉  ↦  { 𝑠  ∈  ( 2  WSPathsN  𝐺 )  ∣  ( 𝑠 ‘ 1 )  =  𝑎 } ) ‘ 𝑦 ) )  =  Σ 𝑦  ∈  𝑉 ( 𝐾  ·  ( 𝐾  −  1 ) ) ) | 
						
							| 38 | 9 | adantr | ⊢ ( ( 𝐺  ∈  FinUSGraph  ∧  𝑉  ≠  ∅ )  →  𝑉  ∈  Fin ) | 
						
							| 39 |  | eqid | ⊢ ( VtxDeg ‘ 𝐺 )  =  ( VtxDeg ‘ 𝐺 ) | 
						
							| 40 | 1 39 | fusgrregdegfi | ⊢ ( ( 𝐺  ∈  FinUSGraph  ∧  𝑉  ≠  ∅ )  →  ( ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾  →  𝐾  ∈  ℕ0 ) ) | 
						
							| 41 | 40 | imp | ⊢ ( ( ( 𝐺  ∈  FinUSGraph  ∧  𝑉  ≠  ∅ )  ∧  ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾 )  →  𝐾  ∈  ℕ0 ) | 
						
							| 42 | 41 | nn0cnd | ⊢ ( ( ( 𝐺  ∈  FinUSGraph  ∧  𝑉  ≠  ∅ )  ∧  ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾 )  →  𝐾  ∈  ℂ ) | 
						
							| 43 |  | kcnktkm1cn | ⊢ ( 𝐾  ∈  ℂ  →  ( 𝐾  ·  ( 𝐾  −  1 ) )  ∈  ℂ ) | 
						
							| 44 | 42 43 | syl | ⊢ ( ( ( 𝐺  ∈  FinUSGraph  ∧  𝑉  ≠  ∅ )  ∧  ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾 )  →  ( 𝐾  ·  ( 𝐾  −  1 ) )  ∈  ℂ ) | 
						
							| 45 |  | fsumconst | ⊢ ( ( 𝑉  ∈  Fin  ∧  ( 𝐾  ·  ( 𝐾  −  1 ) )  ∈  ℂ )  →  Σ 𝑦  ∈  𝑉 ( 𝐾  ·  ( 𝐾  −  1 ) )  =  ( ( ♯ ‘ 𝑉 )  ·  ( 𝐾  ·  ( 𝐾  −  1 ) ) ) ) | 
						
							| 46 | 38 44 45 | syl2an2r | ⊢ ( ( ( 𝐺  ∈  FinUSGraph  ∧  𝑉  ≠  ∅ )  ∧  ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾 )  →  Σ 𝑦  ∈  𝑉 ( 𝐾  ·  ( 𝐾  −  1 ) )  =  ( ( ♯ ‘ 𝑉 )  ·  ( 𝐾  ·  ( 𝐾  −  1 ) ) ) ) | 
						
							| 47 | 37 46 | eqtrd | ⊢ ( ( ( 𝐺  ∈  FinUSGraph  ∧  𝑉  ≠  ∅ )  ∧  ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾 )  →  Σ 𝑦  ∈  𝑉 ( ♯ ‘ ( ( 𝑎  ∈  𝑉  ↦  { 𝑠  ∈  ( 2  WSPathsN  𝐺 )  ∣  ( 𝑠 ‘ 1 )  =  𝑎 } ) ‘ 𝑦 ) )  =  ( ( ♯ ‘ 𝑉 )  ·  ( 𝐾  ·  ( 𝐾  −  1 ) ) ) ) | 
						
							| 48 | 8 27 47 | 3eqtrd | ⊢ ( ( ( 𝐺  ∈  FinUSGraph  ∧  𝑉  ≠  ∅ )  ∧  ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾 )  →  ( ♯ ‘ ( 2  WSPathsN  𝐺 ) )  =  ( ( ♯ ‘ 𝑉 )  ·  ( 𝐾  ·  ( 𝐾  −  1 ) ) ) ) | 
						
							| 49 | 48 | ex | ⊢ ( ( 𝐺  ∈  FinUSGraph  ∧  𝑉  ≠  ∅ )  →  ( ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾  →  ( ♯ ‘ ( 2  WSPathsN  𝐺 ) )  =  ( ( ♯ ‘ 𝑉 )  ·  ( 𝐾  ·  ( 𝐾  −  1 ) ) ) ) ) |