| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frgrhash2wsp.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | fusgreg2wsp.m | ⊢ 𝑀  =  ( 𝑎  ∈  𝑉  ↦  { 𝑤  ∈  ( 2  WSPathsN  𝐺 )  ∣  ( 𝑤 ‘ 1 )  =  𝑎 } ) | 
						
							| 3 | 1 2 | fusgr2wsp2nb | ⊢ ( ( 𝐺  ∈  FinUSGraph  ∧  𝑣  ∈  𝑉 )  →  ( 𝑀 ‘ 𝑣 )  =  ∪  𝑐  ∈  ( 𝐺  NeighbVtx  𝑣 ) ∪  𝑑  ∈  ( ( 𝐺  NeighbVtx  𝑣 )  ∖  { 𝑐 } ) { 〈“ 𝑐 𝑣 𝑑 ”〉 } ) | 
						
							| 4 | 3 | fveq2d | ⊢ ( ( 𝐺  ∈  FinUSGraph  ∧  𝑣  ∈  𝑉 )  →  ( ♯ ‘ ( 𝑀 ‘ 𝑣 ) )  =  ( ♯ ‘ ∪  𝑐  ∈  ( 𝐺  NeighbVtx  𝑣 ) ∪  𝑑  ∈  ( ( 𝐺  NeighbVtx  𝑣 )  ∖  { 𝑐 } ) { 〈“ 𝑐 𝑣 𝑑 ”〉 } ) ) | 
						
							| 5 | 4 | adantr | ⊢ ( ( ( 𝐺  ∈  FinUSGraph  ∧  𝑣  ∈  𝑉 )  ∧  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾 )  →  ( ♯ ‘ ( 𝑀 ‘ 𝑣 ) )  =  ( ♯ ‘ ∪  𝑐  ∈  ( 𝐺  NeighbVtx  𝑣 ) ∪  𝑑  ∈  ( ( 𝐺  NeighbVtx  𝑣 )  ∖  { 𝑐 } ) { 〈“ 𝑐 𝑣 𝑑 ”〉 } ) ) | 
						
							| 6 | 1 | eleq2i | ⊢ ( 𝑣  ∈  𝑉  ↔  𝑣  ∈  ( Vtx ‘ 𝐺 ) ) | 
						
							| 7 |  | nbfiusgrfi | ⊢ ( ( 𝐺  ∈  FinUSGraph  ∧  𝑣  ∈  ( Vtx ‘ 𝐺 ) )  →  ( 𝐺  NeighbVtx  𝑣 )  ∈  Fin ) | 
						
							| 8 | 6 7 | sylan2b | ⊢ ( ( 𝐺  ∈  FinUSGraph  ∧  𝑣  ∈  𝑉 )  →  ( 𝐺  NeighbVtx  𝑣 )  ∈  Fin ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( ( 𝐺  ∈  FinUSGraph  ∧  𝑣  ∈  𝑉 )  ∧  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾 )  →  ( 𝐺  NeighbVtx  𝑣 )  ∈  Fin ) | 
						
							| 10 |  | eqid | ⊢ ( ( 𝐺  NeighbVtx  𝑣 )  ∖  { 𝑐 } )  =  ( ( 𝐺  NeighbVtx  𝑣 )  ∖  { 𝑐 } ) | 
						
							| 11 |  | snfi | ⊢ { 〈“ 𝑐 𝑣 𝑑 ”〉 }  ∈  Fin | 
						
							| 12 | 11 | a1i | ⊢ ( ( ( ( 𝐺  ∈  FinUSGraph  ∧  𝑣  ∈  𝑉 )  ∧  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾 )  ∧  𝑐  ∈  ( 𝐺  NeighbVtx  𝑣 )  ∧  𝑑  ∈  ( ( 𝐺  NeighbVtx  𝑣 )  ∖  { 𝑐 } ) )  →  { 〈“ 𝑐 𝑣 𝑑 ”〉 }  ∈  Fin ) | 
						
							| 13 | 1 | nbgrssvtx | ⊢ ( 𝐺  NeighbVtx  𝑣 )  ⊆  𝑉 | 
						
							| 14 | 13 | a1i | ⊢ ( ( ( 𝐺  ∈  FinUSGraph  ∧  𝑣  ∈  𝑉 )  ∧  𝑐  ∈  ( 𝐺  NeighbVtx  𝑣 ) )  →  ( 𝐺  NeighbVtx  𝑣 )  ⊆  𝑉 ) | 
						
							| 15 | 14 | ssdifd | ⊢ ( ( ( 𝐺  ∈  FinUSGraph  ∧  𝑣  ∈  𝑉 )  ∧  𝑐  ∈  ( 𝐺  NeighbVtx  𝑣 ) )  →  ( ( 𝐺  NeighbVtx  𝑣 )  ∖  { 𝑐 } )  ⊆  ( 𝑉  ∖  { 𝑐 } ) ) | 
						
							| 16 |  | iunss1 | ⊢ ( ( ( 𝐺  NeighbVtx  𝑣 )  ∖  { 𝑐 } )  ⊆  ( 𝑉  ∖  { 𝑐 } )  →  ∪  𝑑  ∈  ( ( 𝐺  NeighbVtx  𝑣 )  ∖  { 𝑐 } ) { 〈“ 𝑐 𝑣 𝑑 ”〉 }  ⊆  ∪  𝑑  ∈  ( 𝑉  ∖  { 𝑐 } ) { 〈“ 𝑐 𝑣 𝑑 ”〉 } ) | 
						
							| 17 | 15 16 | syl | ⊢ ( ( ( 𝐺  ∈  FinUSGraph  ∧  𝑣  ∈  𝑉 )  ∧  𝑐  ∈  ( 𝐺  NeighbVtx  𝑣 ) )  →  ∪  𝑑  ∈  ( ( 𝐺  NeighbVtx  𝑣 )  ∖  { 𝑐 } ) { 〈“ 𝑐 𝑣 𝑑 ”〉 }  ⊆  ∪  𝑑  ∈  ( 𝑉  ∖  { 𝑐 } ) { 〈“ 𝑐 𝑣 𝑑 ”〉 } ) | 
						
							| 18 | 17 | ralrimiva | ⊢ ( ( 𝐺  ∈  FinUSGraph  ∧  𝑣  ∈  𝑉 )  →  ∀ 𝑐  ∈  ( 𝐺  NeighbVtx  𝑣 ) ∪  𝑑  ∈  ( ( 𝐺  NeighbVtx  𝑣 )  ∖  { 𝑐 } ) { 〈“ 𝑐 𝑣 𝑑 ”〉 }  ⊆  ∪  𝑑  ∈  ( 𝑉  ∖  { 𝑐 } ) { 〈“ 𝑐 𝑣 𝑑 ”〉 } ) | 
						
							| 19 |  | simpr | ⊢ ( ( 𝐺  ∈  FinUSGraph  ∧  𝑣  ∈  𝑉 )  →  𝑣  ∈  𝑉 ) | 
						
							| 20 |  | s3iunsndisj | ⊢ ( 𝑣  ∈  𝑉  →  Disj  𝑐  ∈  ( 𝐺  NeighbVtx  𝑣 ) ∪  𝑑  ∈  ( 𝑉  ∖  { 𝑐 } ) { 〈“ 𝑐 𝑣 𝑑 ”〉 } ) | 
						
							| 21 | 19 20 | syl | ⊢ ( ( 𝐺  ∈  FinUSGraph  ∧  𝑣  ∈  𝑉 )  →  Disj  𝑐  ∈  ( 𝐺  NeighbVtx  𝑣 ) ∪  𝑑  ∈  ( 𝑉  ∖  { 𝑐 } ) { 〈“ 𝑐 𝑣 𝑑 ”〉 } ) | 
						
							| 22 |  | disjss2 | ⊢ ( ∀ 𝑐  ∈  ( 𝐺  NeighbVtx  𝑣 ) ∪  𝑑  ∈  ( ( 𝐺  NeighbVtx  𝑣 )  ∖  { 𝑐 } ) { 〈“ 𝑐 𝑣 𝑑 ”〉 }  ⊆  ∪  𝑑  ∈  ( 𝑉  ∖  { 𝑐 } ) { 〈“ 𝑐 𝑣 𝑑 ”〉 }  →  ( Disj  𝑐  ∈  ( 𝐺  NeighbVtx  𝑣 ) ∪  𝑑  ∈  ( 𝑉  ∖  { 𝑐 } ) { 〈“ 𝑐 𝑣 𝑑 ”〉 }  →  Disj  𝑐  ∈  ( 𝐺  NeighbVtx  𝑣 ) ∪  𝑑  ∈  ( ( 𝐺  NeighbVtx  𝑣 )  ∖  { 𝑐 } ) { 〈“ 𝑐 𝑣 𝑑 ”〉 } ) ) | 
						
							| 23 | 18 21 22 | sylc | ⊢ ( ( 𝐺  ∈  FinUSGraph  ∧  𝑣  ∈  𝑉 )  →  Disj  𝑐  ∈  ( 𝐺  NeighbVtx  𝑣 ) ∪  𝑑  ∈  ( ( 𝐺  NeighbVtx  𝑣 )  ∖  { 𝑐 } ) { 〈“ 𝑐 𝑣 𝑑 ”〉 } ) | 
						
							| 24 | 23 | adantr | ⊢ ( ( ( 𝐺  ∈  FinUSGraph  ∧  𝑣  ∈  𝑉 )  ∧  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾 )  →  Disj  𝑐  ∈  ( 𝐺  NeighbVtx  𝑣 ) ∪  𝑑  ∈  ( ( 𝐺  NeighbVtx  𝑣 )  ∖  { 𝑐 } ) { 〈“ 𝑐 𝑣 𝑑 ”〉 } ) | 
						
							| 25 | 19 | adantr | ⊢ ( ( ( 𝐺  ∈  FinUSGraph  ∧  𝑣  ∈  𝑉 )  ∧  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾 )  →  𝑣  ∈  𝑉 ) | 
						
							| 26 | 25 | anim1ci | ⊢ ( ( ( ( 𝐺  ∈  FinUSGraph  ∧  𝑣  ∈  𝑉 )  ∧  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾 )  ∧  𝑐  ∈  ( 𝐺  NeighbVtx  𝑣 ) )  →  ( 𝑐  ∈  ( 𝐺  NeighbVtx  𝑣 )  ∧  𝑣  ∈  𝑉 ) ) | 
						
							| 27 |  | s3sndisj | ⊢ ( ( 𝑐  ∈  ( 𝐺  NeighbVtx  𝑣 )  ∧  𝑣  ∈  𝑉 )  →  Disj  𝑑  ∈  ( ( 𝐺  NeighbVtx  𝑣 )  ∖  { 𝑐 } ) { 〈“ 𝑐 𝑣 𝑑 ”〉 } ) | 
						
							| 28 | 26 27 | syl | ⊢ ( ( ( ( 𝐺  ∈  FinUSGraph  ∧  𝑣  ∈  𝑉 )  ∧  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾 )  ∧  𝑐  ∈  ( 𝐺  NeighbVtx  𝑣 ) )  →  Disj  𝑑  ∈  ( ( 𝐺  NeighbVtx  𝑣 )  ∖  { 𝑐 } ) { 〈“ 𝑐 𝑣 𝑑 ”〉 } ) | 
						
							| 29 |  | s3cli | ⊢ 〈“ 𝑐 𝑣 𝑑 ”〉  ∈  Word  V | 
						
							| 30 |  | hashsng | ⊢ ( 〈“ 𝑐 𝑣 𝑑 ”〉  ∈  Word  V  →  ( ♯ ‘ { 〈“ 𝑐 𝑣 𝑑 ”〉 } )  =  1 ) | 
						
							| 31 | 29 30 | mp1i | ⊢ ( ( ( ( 𝐺  ∈  FinUSGraph  ∧  𝑣  ∈  𝑉 )  ∧  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾 )  ∧  𝑐  ∈  ( 𝐺  NeighbVtx  𝑣 )  ∧  𝑑  ∈  ( ( 𝐺  NeighbVtx  𝑣 )  ∖  { 𝑐 } ) )  →  ( ♯ ‘ { 〈“ 𝑐 𝑣 𝑑 ”〉 } )  =  1 ) | 
						
							| 32 | 9 10 12 24 28 31 | hash2iun1dif1 | ⊢ ( ( ( 𝐺  ∈  FinUSGraph  ∧  𝑣  ∈  𝑉 )  ∧  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾 )  →  ( ♯ ‘ ∪  𝑐  ∈  ( 𝐺  NeighbVtx  𝑣 ) ∪  𝑑  ∈  ( ( 𝐺  NeighbVtx  𝑣 )  ∖  { 𝑐 } ) { 〈“ 𝑐 𝑣 𝑑 ”〉 } )  =  ( ( ♯ ‘ ( 𝐺  NeighbVtx  𝑣 ) )  ·  ( ( ♯ ‘ ( 𝐺  NeighbVtx  𝑣 ) )  −  1 ) ) ) | 
						
							| 33 |  | fusgrusgr | ⊢ ( 𝐺  ∈  FinUSGraph  →  𝐺  ∈  USGraph ) | 
						
							| 34 | 1 | hashnbusgrvd | ⊢ ( ( 𝐺  ∈  USGraph  ∧  𝑣  ∈  𝑉 )  →  ( ♯ ‘ ( 𝐺  NeighbVtx  𝑣 ) )  =  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) ) | 
						
							| 35 | 33 34 | sylan | ⊢ ( ( 𝐺  ∈  FinUSGraph  ∧  𝑣  ∈  𝑉 )  →  ( ♯ ‘ ( 𝐺  NeighbVtx  𝑣 ) )  =  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) ) | 
						
							| 36 |  | id | ⊢ ( ( ♯ ‘ ( 𝐺  NeighbVtx  𝑣 ) )  =  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  →  ( ♯ ‘ ( 𝐺  NeighbVtx  𝑣 ) )  =  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) ) | 
						
							| 37 |  | oveq1 | ⊢ ( ( ♯ ‘ ( 𝐺  NeighbVtx  𝑣 ) )  =  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  →  ( ( ♯ ‘ ( 𝐺  NeighbVtx  𝑣 ) )  −  1 )  =  ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  −  1 ) ) | 
						
							| 38 | 36 37 | oveq12d | ⊢ ( ( ♯ ‘ ( 𝐺  NeighbVtx  𝑣 ) )  =  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  →  ( ( ♯ ‘ ( 𝐺  NeighbVtx  𝑣 ) )  ·  ( ( ♯ ‘ ( 𝐺  NeighbVtx  𝑣 ) )  −  1 ) )  =  ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  ·  ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  −  1 ) ) ) | 
						
							| 39 | 35 38 | syl | ⊢ ( ( 𝐺  ∈  FinUSGraph  ∧  𝑣  ∈  𝑉 )  →  ( ( ♯ ‘ ( 𝐺  NeighbVtx  𝑣 ) )  ·  ( ( ♯ ‘ ( 𝐺  NeighbVtx  𝑣 ) )  −  1 ) )  =  ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  ·  ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  −  1 ) ) ) | 
						
							| 40 |  | id | ⊢ ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾  →  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾 ) | 
						
							| 41 |  | oveq1 | ⊢ ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾  →  ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  −  1 )  =  ( 𝐾  −  1 ) ) | 
						
							| 42 | 40 41 | oveq12d | ⊢ ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾  →  ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  ·  ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  −  1 ) )  =  ( 𝐾  ·  ( 𝐾  −  1 ) ) ) | 
						
							| 43 | 39 42 | sylan9eq | ⊢ ( ( ( 𝐺  ∈  FinUSGraph  ∧  𝑣  ∈  𝑉 )  ∧  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾 )  →  ( ( ♯ ‘ ( 𝐺  NeighbVtx  𝑣 ) )  ·  ( ( ♯ ‘ ( 𝐺  NeighbVtx  𝑣 ) )  −  1 ) )  =  ( 𝐾  ·  ( 𝐾  −  1 ) ) ) | 
						
							| 44 | 5 32 43 | 3eqtrd | ⊢ ( ( ( 𝐺  ∈  FinUSGraph  ∧  𝑣  ∈  𝑉 )  ∧  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾 )  →  ( ♯ ‘ ( 𝑀 ‘ 𝑣 ) )  =  ( 𝐾  ·  ( 𝐾  −  1 ) ) ) | 
						
							| 45 | 44 | ex | ⊢ ( ( 𝐺  ∈  FinUSGraph  ∧  𝑣  ∈  𝑉 )  →  ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾  →  ( ♯ ‘ ( 𝑀 ‘ 𝑣 ) )  =  ( 𝐾  ·  ( 𝐾  −  1 ) ) ) ) | 
						
							| 46 | 45 | ralrimiva | ⊢ ( 𝐺  ∈  FinUSGraph  →  ∀ 𝑣  ∈  𝑉 ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾  →  ( ♯ ‘ ( 𝑀 ‘ 𝑣 ) )  =  ( 𝐾  ·  ( 𝐾  −  1 ) ) ) ) |