Step |
Hyp |
Ref |
Expression |
1 |
|
hash2iun1dif1.a |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
2 |
|
hash2iun1dif1.b |
⊢ 𝐵 = ( 𝐴 ∖ { 𝑥 } ) |
3 |
|
hash2iun1dif1.c |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → 𝐶 ∈ Fin ) |
4 |
|
hash2iun1dif1.da |
⊢ ( 𝜑 → Disj 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 𝐶 ) |
5 |
|
hash2iun1dif1.db |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → Disj 𝑦 ∈ 𝐵 𝐶 ) |
6 |
|
hash2iun1dif1.1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( ♯ ‘ 𝐶 ) = 1 ) |
7 |
|
diffi |
⊢ ( 𝐴 ∈ Fin → ( 𝐴 ∖ { 𝑥 } ) ∈ Fin ) |
8 |
1 7
|
syl |
⊢ ( 𝜑 → ( 𝐴 ∖ { 𝑥 } ) ∈ Fin ) |
9 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐴 ∖ { 𝑥 } ) ∈ Fin ) |
10 |
2 9
|
eqeltrid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ Fin ) |
11 |
1 10 3 4 5
|
hash2iun |
⊢ ( 𝜑 → ( ♯ ‘ ∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 𝐶 ) = Σ 𝑥 ∈ 𝐴 Σ 𝑦 ∈ 𝐵 ( ♯ ‘ 𝐶 ) ) |
12 |
6
|
2sumeq2dv |
⊢ ( 𝜑 → Σ 𝑥 ∈ 𝐴 Σ 𝑦 ∈ 𝐵 ( ♯ ‘ 𝐶 ) = Σ 𝑥 ∈ 𝐴 Σ 𝑦 ∈ 𝐵 1 ) |
13 |
|
1cnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 1 ∈ ℂ ) |
14 |
|
fsumconst |
⊢ ( ( 𝐵 ∈ Fin ∧ 1 ∈ ℂ ) → Σ 𝑦 ∈ 𝐵 1 = ( ( ♯ ‘ 𝐵 ) · 1 ) ) |
15 |
10 13 14
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → Σ 𝑦 ∈ 𝐵 1 = ( ( ♯ ‘ 𝐵 ) · 1 ) ) |
16 |
15
|
sumeq2dv |
⊢ ( 𝜑 → Σ 𝑥 ∈ 𝐴 Σ 𝑦 ∈ 𝐵 1 = Σ 𝑥 ∈ 𝐴 ( ( ♯ ‘ 𝐵 ) · 1 ) ) |
17 |
2
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 = ( 𝐴 ∖ { 𝑥 } ) ) |
18 |
17
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ♯ ‘ 𝐵 ) = ( ♯ ‘ ( 𝐴 ∖ { 𝑥 } ) ) ) |
19 |
|
hashdifsn |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝑥 ∈ 𝐴 ) → ( ♯ ‘ ( 𝐴 ∖ { 𝑥 } ) ) = ( ( ♯ ‘ 𝐴 ) − 1 ) ) |
20 |
1 19
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ♯ ‘ ( 𝐴 ∖ { 𝑥 } ) ) = ( ( ♯ ‘ 𝐴 ) − 1 ) ) |
21 |
18 20
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ♯ ‘ 𝐵 ) = ( ( ♯ ‘ 𝐴 ) − 1 ) ) |
22 |
21
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( ♯ ‘ 𝐵 ) · 1 ) = ( ( ( ♯ ‘ 𝐴 ) − 1 ) · 1 ) ) |
23 |
22
|
sumeq2dv |
⊢ ( 𝜑 → Σ 𝑥 ∈ 𝐴 ( ( ♯ ‘ 𝐵 ) · 1 ) = Σ 𝑥 ∈ 𝐴 ( ( ( ♯ ‘ 𝐴 ) − 1 ) · 1 ) ) |
24 |
|
hashcl |
⊢ ( 𝐴 ∈ Fin → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) |
25 |
1 24
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) |
26 |
25
|
nn0cnd |
⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) ∈ ℂ ) |
27 |
|
peano2cnm |
⊢ ( ( ♯ ‘ 𝐴 ) ∈ ℂ → ( ( ♯ ‘ 𝐴 ) − 1 ) ∈ ℂ ) |
28 |
26 27
|
syl |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝐴 ) − 1 ) ∈ ℂ ) |
29 |
28
|
mulid1d |
⊢ ( 𝜑 → ( ( ( ♯ ‘ 𝐴 ) − 1 ) · 1 ) = ( ( ♯ ‘ 𝐴 ) − 1 ) ) |
30 |
29
|
sumeq2sdv |
⊢ ( 𝜑 → Σ 𝑥 ∈ 𝐴 ( ( ( ♯ ‘ 𝐴 ) − 1 ) · 1 ) = Σ 𝑥 ∈ 𝐴 ( ( ♯ ‘ 𝐴 ) − 1 ) ) |
31 |
|
fsumconst |
⊢ ( ( 𝐴 ∈ Fin ∧ ( ( ♯ ‘ 𝐴 ) − 1 ) ∈ ℂ ) → Σ 𝑥 ∈ 𝐴 ( ( ♯ ‘ 𝐴 ) − 1 ) = ( ( ♯ ‘ 𝐴 ) · ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) |
32 |
1 28 31
|
syl2anc |
⊢ ( 𝜑 → Σ 𝑥 ∈ 𝐴 ( ( ♯ ‘ 𝐴 ) − 1 ) = ( ( ♯ ‘ 𝐴 ) · ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) |
33 |
30 32
|
eqtrd |
⊢ ( 𝜑 → Σ 𝑥 ∈ 𝐴 ( ( ( ♯ ‘ 𝐴 ) − 1 ) · 1 ) = ( ( ♯ ‘ 𝐴 ) · ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) |
34 |
16 23 33
|
3eqtrd |
⊢ ( 𝜑 → Σ 𝑥 ∈ 𝐴 Σ 𝑦 ∈ 𝐵 1 = ( ( ♯ ‘ 𝐴 ) · ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) |
35 |
11 12 34
|
3eqtrd |
⊢ ( 𝜑 → ( ♯ ‘ ∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 𝐶 ) = ( ( ♯ ‘ 𝐴 ) · ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) |