| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hashrabrex.1 | ⊢ ( 𝜑  →  𝑌  ∈  Fin ) | 
						
							| 2 |  | hashrabrex.2 | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  →  { 𝑥  ∈  𝑋  ∣  𝜓 }  ∈  Fin ) | 
						
							| 3 |  | hashrabrex.3 | ⊢ ( 𝜑  →  Disj  𝑦  ∈  𝑌 { 𝑥  ∈  𝑋  ∣  𝜓 } ) | 
						
							| 4 |  | iunrab | ⊢ ∪  𝑦  ∈  𝑌 { 𝑥  ∈  𝑋  ∣  𝜓 }  =  { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑌 𝜓 } | 
						
							| 5 | 4 | eqcomi | ⊢ { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑌 𝜓 }  =  ∪  𝑦  ∈  𝑌 { 𝑥  ∈  𝑋  ∣  𝜓 } | 
						
							| 6 | 5 | fveq2i | ⊢ ( ♯ ‘ { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑌 𝜓 } )  =  ( ♯ ‘ ∪  𝑦  ∈  𝑌 { 𝑥  ∈  𝑋  ∣  𝜓 } ) | 
						
							| 7 | 1 2 3 | hashiun | ⊢ ( 𝜑  →  ( ♯ ‘ ∪  𝑦  ∈  𝑌 { 𝑥  ∈  𝑋  ∣  𝜓 } )  =  Σ 𝑦  ∈  𝑌 ( ♯ ‘ { 𝑥  ∈  𝑋  ∣  𝜓 } ) ) | 
						
							| 8 | 6 7 | eqtrid | ⊢ ( 𝜑  →  ( ♯ ‘ { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑌 𝜓 } )  =  Σ 𝑦  ∈  𝑌 ( ♯ ‘ { 𝑥  ∈  𝑋  ∣  𝜓 } ) ) |