| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hash2iun1dif1.a |  | 
						
							| 2 |  | hash2iun1dif1.b |  | 
						
							| 3 |  | hash2iun1dif1.c |  | 
						
							| 4 |  | hash2iun1dif1.da |  | 
						
							| 5 |  | hash2iun1dif1.db |  | 
						
							| 6 |  | hash2iun1dif1.1 |  | 
						
							| 7 |  | diffi |  | 
						
							| 8 | 1 7 | syl |  | 
						
							| 9 | 8 | adantr |  | 
						
							| 10 | 2 9 | eqeltrid |  | 
						
							| 11 | 1 10 3 4 5 | hash2iun |  | 
						
							| 12 | 6 | 2sumeq2dv |  | 
						
							| 13 |  | 1cnd |  | 
						
							| 14 |  | fsumconst |  | 
						
							| 15 | 10 13 14 | syl2anc |  | 
						
							| 16 | 15 | sumeq2dv |  | 
						
							| 17 | 2 | a1i |  | 
						
							| 18 | 17 | fveq2d |  | 
						
							| 19 |  | hashdifsn |  | 
						
							| 20 | 1 19 | sylan |  | 
						
							| 21 | 18 20 | eqtrd |  | 
						
							| 22 | 21 | oveq1d |  | 
						
							| 23 | 22 | sumeq2dv |  | 
						
							| 24 |  | hashcl |  | 
						
							| 25 | 1 24 | syl |  | 
						
							| 26 | 25 | nn0cnd |  | 
						
							| 27 |  | peano2cnm |  | 
						
							| 28 | 26 27 | syl |  | 
						
							| 29 | 28 | mulridd |  | 
						
							| 30 | 29 | sumeq2sdv |  | 
						
							| 31 |  | fsumconst |  | 
						
							| 32 | 1 28 31 | syl2anc |  | 
						
							| 33 | 30 32 | eqtrd |  | 
						
							| 34 | 16 23 33 | 3eqtrd |  | 
						
							| 35 | 11 12 34 | 3eqtrd |  |