| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frgrhash2wsp.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | fusgreg2wsp.m |  |-  M = ( a e. V |-> { w e. ( 2 WSPathsN G ) | ( w ` 1 ) = a } ) | 
						
							| 3 | 1 2 | fusgr2wsp2nb |  |-  ( ( G e. FinUSGraph /\ v e. V ) -> ( M ` v ) = U_ c e. ( G NeighbVtx v ) U_ d e. ( ( G NeighbVtx v ) \ { c } ) { <" c v d "> } ) | 
						
							| 4 | 3 | fveq2d |  |-  ( ( G e. FinUSGraph /\ v e. V ) -> ( # ` ( M ` v ) ) = ( # ` U_ c e. ( G NeighbVtx v ) U_ d e. ( ( G NeighbVtx v ) \ { c } ) { <" c v d "> } ) ) | 
						
							| 5 | 4 | adantr |  |-  ( ( ( G e. FinUSGraph /\ v e. V ) /\ ( ( VtxDeg ` G ) ` v ) = K ) -> ( # ` ( M ` v ) ) = ( # ` U_ c e. ( G NeighbVtx v ) U_ d e. ( ( G NeighbVtx v ) \ { c } ) { <" c v d "> } ) ) | 
						
							| 6 | 1 | eleq2i |  |-  ( v e. V <-> v e. ( Vtx ` G ) ) | 
						
							| 7 |  | nbfiusgrfi |  |-  ( ( G e. FinUSGraph /\ v e. ( Vtx ` G ) ) -> ( G NeighbVtx v ) e. Fin ) | 
						
							| 8 | 6 7 | sylan2b |  |-  ( ( G e. FinUSGraph /\ v e. V ) -> ( G NeighbVtx v ) e. Fin ) | 
						
							| 9 | 8 | adantr |  |-  ( ( ( G e. FinUSGraph /\ v e. V ) /\ ( ( VtxDeg ` G ) ` v ) = K ) -> ( G NeighbVtx v ) e. Fin ) | 
						
							| 10 |  | eqid |  |-  ( ( G NeighbVtx v ) \ { c } ) = ( ( G NeighbVtx v ) \ { c } ) | 
						
							| 11 |  | snfi |  |-  { <" c v d "> } e. Fin | 
						
							| 12 | 11 | a1i |  |-  ( ( ( ( G e. FinUSGraph /\ v e. V ) /\ ( ( VtxDeg ` G ) ` v ) = K ) /\ c e. ( G NeighbVtx v ) /\ d e. ( ( G NeighbVtx v ) \ { c } ) ) -> { <" c v d "> } e. Fin ) | 
						
							| 13 | 1 | nbgrssvtx |  |-  ( G NeighbVtx v ) C_ V | 
						
							| 14 | 13 | a1i |  |-  ( ( ( G e. FinUSGraph /\ v e. V ) /\ c e. ( G NeighbVtx v ) ) -> ( G NeighbVtx v ) C_ V ) | 
						
							| 15 | 14 | ssdifd |  |-  ( ( ( G e. FinUSGraph /\ v e. V ) /\ c e. ( G NeighbVtx v ) ) -> ( ( G NeighbVtx v ) \ { c } ) C_ ( V \ { c } ) ) | 
						
							| 16 |  | iunss1 |  |-  ( ( ( G NeighbVtx v ) \ { c } ) C_ ( V \ { c } ) -> U_ d e. ( ( G NeighbVtx v ) \ { c } ) { <" c v d "> } C_ U_ d e. ( V \ { c } ) { <" c v d "> } ) | 
						
							| 17 | 15 16 | syl |  |-  ( ( ( G e. FinUSGraph /\ v e. V ) /\ c e. ( G NeighbVtx v ) ) -> U_ d e. ( ( G NeighbVtx v ) \ { c } ) { <" c v d "> } C_ U_ d e. ( V \ { c } ) { <" c v d "> } ) | 
						
							| 18 | 17 | ralrimiva |  |-  ( ( G e. FinUSGraph /\ v e. V ) -> A. c e. ( G NeighbVtx v ) U_ d e. ( ( G NeighbVtx v ) \ { c } ) { <" c v d "> } C_ U_ d e. ( V \ { c } ) { <" c v d "> } ) | 
						
							| 19 |  | simpr |  |-  ( ( G e. FinUSGraph /\ v e. V ) -> v e. V ) | 
						
							| 20 |  | s3iunsndisj |  |-  ( v e. V -> Disj_ c e. ( G NeighbVtx v ) U_ d e. ( V \ { c } ) { <" c v d "> } ) | 
						
							| 21 | 19 20 | syl |  |-  ( ( G e. FinUSGraph /\ v e. V ) -> Disj_ c e. ( G NeighbVtx v ) U_ d e. ( V \ { c } ) { <" c v d "> } ) | 
						
							| 22 |  | disjss2 |  |-  ( A. c e. ( G NeighbVtx v ) U_ d e. ( ( G NeighbVtx v ) \ { c } ) { <" c v d "> } C_ U_ d e. ( V \ { c } ) { <" c v d "> } -> ( Disj_ c e. ( G NeighbVtx v ) U_ d e. ( V \ { c } ) { <" c v d "> } -> Disj_ c e. ( G NeighbVtx v ) U_ d e. ( ( G NeighbVtx v ) \ { c } ) { <" c v d "> } ) ) | 
						
							| 23 | 18 21 22 | sylc |  |-  ( ( G e. FinUSGraph /\ v e. V ) -> Disj_ c e. ( G NeighbVtx v ) U_ d e. ( ( G NeighbVtx v ) \ { c } ) { <" c v d "> } ) | 
						
							| 24 | 23 | adantr |  |-  ( ( ( G e. FinUSGraph /\ v e. V ) /\ ( ( VtxDeg ` G ) ` v ) = K ) -> Disj_ c e. ( G NeighbVtx v ) U_ d e. ( ( G NeighbVtx v ) \ { c } ) { <" c v d "> } ) | 
						
							| 25 | 19 | adantr |  |-  ( ( ( G e. FinUSGraph /\ v e. V ) /\ ( ( VtxDeg ` G ) ` v ) = K ) -> v e. V ) | 
						
							| 26 | 25 | anim1ci |  |-  ( ( ( ( G e. FinUSGraph /\ v e. V ) /\ ( ( VtxDeg ` G ) ` v ) = K ) /\ c e. ( G NeighbVtx v ) ) -> ( c e. ( G NeighbVtx v ) /\ v e. V ) ) | 
						
							| 27 |  | s3sndisj |  |-  ( ( c e. ( G NeighbVtx v ) /\ v e. V ) -> Disj_ d e. ( ( G NeighbVtx v ) \ { c } ) { <" c v d "> } ) | 
						
							| 28 | 26 27 | syl |  |-  ( ( ( ( G e. FinUSGraph /\ v e. V ) /\ ( ( VtxDeg ` G ) ` v ) = K ) /\ c e. ( G NeighbVtx v ) ) -> Disj_ d e. ( ( G NeighbVtx v ) \ { c } ) { <" c v d "> } ) | 
						
							| 29 |  | s3cli |  |-  <" c v d "> e. Word _V | 
						
							| 30 |  | hashsng |  |-  ( <" c v d "> e. Word _V -> ( # ` { <" c v d "> } ) = 1 ) | 
						
							| 31 | 29 30 | mp1i |  |-  ( ( ( ( G e. FinUSGraph /\ v e. V ) /\ ( ( VtxDeg ` G ) ` v ) = K ) /\ c e. ( G NeighbVtx v ) /\ d e. ( ( G NeighbVtx v ) \ { c } ) ) -> ( # ` { <" c v d "> } ) = 1 ) | 
						
							| 32 | 9 10 12 24 28 31 | hash2iun1dif1 |  |-  ( ( ( G e. FinUSGraph /\ v e. V ) /\ ( ( VtxDeg ` G ) ` v ) = K ) -> ( # ` U_ c e. ( G NeighbVtx v ) U_ d e. ( ( G NeighbVtx v ) \ { c } ) { <" c v d "> } ) = ( ( # ` ( G NeighbVtx v ) ) x. ( ( # ` ( G NeighbVtx v ) ) - 1 ) ) ) | 
						
							| 33 |  | fusgrusgr |  |-  ( G e. FinUSGraph -> G e. USGraph ) | 
						
							| 34 | 1 | hashnbusgrvd |  |-  ( ( G e. USGraph /\ v e. V ) -> ( # ` ( G NeighbVtx v ) ) = ( ( VtxDeg ` G ) ` v ) ) | 
						
							| 35 | 33 34 | sylan |  |-  ( ( G e. FinUSGraph /\ v e. V ) -> ( # ` ( G NeighbVtx v ) ) = ( ( VtxDeg ` G ) ` v ) ) | 
						
							| 36 |  | id |  |-  ( ( # ` ( G NeighbVtx v ) ) = ( ( VtxDeg ` G ) ` v ) -> ( # ` ( G NeighbVtx v ) ) = ( ( VtxDeg ` G ) ` v ) ) | 
						
							| 37 |  | oveq1 |  |-  ( ( # ` ( G NeighbVtx v ) ) = ( ( VtxDeg ` G ) ` v ) -> ( ( # ` ( G NeighbVtx v ) ) - 1 ) = ( ( ( VtxDeg ` G ) ` v ) - 1 ) ) | 
						
							| 38 | 36 37 | oveq12d |  |-  ( ( # ` ( G NeighbVtx v ) ) = ( ( VtxDeg ` G ) ` v ) -> ( ( # ` ( G NeighbVtx v ) ) x. ( ( # ` ( G NeighbVtx v ) ) - 1 ) ) = ( ( ( VtxDeg ` G ) ` v ) x. ( ( ( VtxDeg ` G ) ` v ) - 1 ) ) ) | 
						
							| 39 | 35 38 | syl |  |-  ( ( G e. FinUSGraph /\ v e. V ) -> ( ( # ` ( G NeighbVtx v ) ) x. ( ( # ` ( G NeighbVtx v ) ) - 1 ) ) = ( ( ( VtxDeg ` G ) ` v ) x. ( ( ( VtxDeg ` G ) ` v ) - 1 ) ) ) | 
						
							| 40 |  | id |  |-  ( ( ( VtxDeg ` G ) ` v ) = K -> ( ( VtxDeg ` G ) ` v ) = K ) | 
						
							| 41 |  | oveq1 |  |-  ( ( ( VtxDeg ` G ) ` v ) = K -> ( ( ( VtxDeg ` G ) ` v ) - 1 ) = ( K - 1 ) ) | 
						
							| 42 | 40 41 | oveq12d |  |-  ( ( ( VtxDeg ` G ) ` v ) = K -> ( ( ( VtxDeg ` G ) ` v ) x. ( ( ( VtxDeg ` G ) ` v ) - 1 ) ) = ( K x. ( K - 1 ) ) ) | 
						
							| 43 | 39 42 | sylan9eq |  |-  ( ( ( G e. FinUSGraph /\ v e. V ) /\ ( ( VtxDeg ` G ) ` v ) = K ) -> ( ( # ` ( G NeighbVtx v ) ) x. ( ( # ` ( G NeighbVtx v ) ) - 1 ) ) = ( K x. ( K - 1 ) ) ) | 
						
							| 44 | 5 32 43 | 3eqtrd |  |-  ( ( ( G e. FinUSGraph /\ v e. V ) /\ ( ( VtxDeg ` G ) ` v ) = K ) -> ( # ` ( M ` v ) ) = ( K x. ( K - 1 ) ) ) | 
						
							| 45 | 44 | ex |  |-  ( ( G e. FinUSGraph /\ v e. V ) -> ( ( ( VtxDeg ` G ) ` v ) = K -> ( # ` ( M ` v ) ) = ( K x. ( K - 1 ) ) ) ) | 
						
							| 46 | 45 | ralrimiva |  |-  ( G e. FinUSGraph -> A. v e. V ( ( ( VtxDeg ` G ) ` v ) = K -> ( # ` ( M ` v ) ) = ( K x. ( K - 1 ) ) ) ) |