| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fusgreghash2wsp.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | fveq1 |  |-  ( s = t -> ( s ` 1 ) = ( t ` 1 ) ) | 
						
							| 3 | 2 | eqeq1d |  |-  ( s = t -> ( ( s ` 1 ) = a <-> ( t ` 1 ) = a ) ) | 
						
							| 4 | 3 | cbvrabv |  |-  { s e. ( 2 WSPathsN G ) | ( s ` 1 ) = a } = { t e. ( 2 WSPathsN G ) | ( t ` 1 ) = a } | 
						
							| 5 | 4 | mpteq2i |  |-  ( a e. V |-> { s e. ( 2 WSPathsN G ) | ( s ` 1 ) = a } ) = ( a e. V |-> { t e. ( 2 WSPathsN G ) | ( t ` 1 ) = a } ) | 
						
							| 6 | 1 5 | fusgreg2wsp |  |-  ( G e. FinUSGraph -> ( 2 WSPathsN G ) = U_ y e. V ( ( a e. V |-> { s e. ( 2 WSPathsN G ) | ( s ` 1 ) = a } ) ` y ) ) | 
						
							| 7 | 6 | ad2antrr |  |-  ( ( ( G e. FinUSGraph /\ V =/= (/) ) /\ A. v e. V ( ( VtxDeg ` G ) ` v ) = K ) -> ( 2 WSPathsN G ) = U_ y e. V ( ( a e. V |-> { s e. ( 2 WSPathsN G ) | ( s ` 1 ) = a } ) ` y ) ) | 
						
							| 8 | 7 | fveq2d |  |-  ( ( ( G e. FinUSGraph /\ V =/= (/) ) /\ A. v e. V ( ( VtxDeg ` G ) ` v ) = K ) -> ( # ` ( 2 WSPathsN G ) ) = ( # ` U_ y e. V ( ( a e. V |-> { s e. ( 2 WSPathsN G ) | ( s ` 1 ) = a } ) ` y ) ) ) | 
						
							| 9 | 1 | fusgrvtxfi |  |-  ( G e. FinUSGraph -> V e. Fin ) | 
						
							| 10 |  | eqeq2 |  |-  ( a = y -> ( ( s ` 1 ) = a <-> ( s ` 1 ) = y ) ) | 
						
							| 11 | 10 | rabbidv |  |-  ( a = y -> { s e. ( 2 WSPathsN G ) | ( s ` 1 ) = a } = { s e. ( 2 WSPathsN G ) | ( s ` 1 ) = y } ) | 
						
							| 12 |  | eqid |  |-  ( a e. V |-> { s e. ( 2 WSPathsN G ) | ( s ` 1 ) = a } ) = ( a e. V |-> { s e. ( 2 WSPathsN G ) | ( s ` 1 ) = a } ) | 
						
							| 13 |  | ovex |  |-  ( 2 WSPathsN G ) e. _V | 
						
							| 14 | 13 | rabex |  |-  { s e. ( 2 WSPathsN G ) | ( s ` 1 ) = y } e. _V | 
						
							| 15 | 11 12 14 | fvmpt |  |-  ( y e. V -> ( ( a e. V |-> { s e. ( 2 WSPathsN G ) | ( s ` 1 ) = a } ) ` y ) = { s e. ( 2 WSPathsN G ) | ( s ` 1 ) = y } ) | 
						
							| 16 | 15 | adantl |  |-  ( ( G e. FinUSGraph /\ y e. V ) -> ( ( a e. V |-> { s e. ( 2 WSPathsN G ) | ( s ` 1 ) = a } ) ` y ) = { s e. ( 2 WSPathsN G ) | ( s ` 1 ) = y } ) | 
						
							| 17 |  | eqid |  |-  ( Vtx ` G ) = ( Vtx ` G ) | 
						
							| 18 | 17 | fusgrvtxfi |  |-  ( G e. FinUSGraph -> ( Vtx ` G ) e. Fin ) | 
						
							| 19 |  | wspthnfi |  |-  ( ( Vtx ` G ) e. Fin -> ( 2 WSPathsN G ) e. Fin ) | 
						
							| 20 |  | rabfi |  |-  ( ( 2 WSPathsN G ) e. Fin -> { s e. ( 2 WSPathsN G ) | ( s ` 1 ) = y } e. Fin ) | 
						
							| 21 | 18 19 20 | 3syl |  |-  ( G e. FinUSGraph -> { s e. ( 2 WSPathsN G ) | ( s ` 1 ) = y } e. Fin ) | 
						
							| 22 | 21 | adantr |  |-  ( ( G e. FinUSGraph /\ y e. V ) -> { s e. ( 2 WSPathsN G ) | ( s ` 1 ) = y } e. Fin ) | 
						
							| 23 | 16 22 | eqeltrd |  |-  ( ( G e. FinUSGraph /\ y e. V ) -> ( ( a e. V |-> { s e. ( 2 WSPathsN G ) | ( s ` 1 ) = a } ) ` y ) e. Fin ) | 
						
							| 24 | 1 5 | 2wspmdisj |  |-  Disj_ y e. V ( ( a e. V |-> { s e. ( 2 WSPathsN G ) | ( s ` 1 ) = a } ) ` y ) | 
						
							| 25 | 24 | a1i |  |-  ( G e. FinUSGraph -> Disj_ y e. V ( ( a e. V |-> { s e. ( 2 WSPathsN G ) | ( s ` 1 ) = a } ) ` y ) ) | 
						
							| 26 | 9 23 25 | hashiun |  |-  ( G e. FinUSGraph -> ( # ` U_ y e. V ( ( a e. V |-> { s e. ( 2 WSPathsN G ) | ( s ` 1 ) = a } ) ` y ) ) = sum_ y e. V ( # ` ( ( a e. V |-> { s e. ( 2 WSPathsN G ) | ( s ` 1 ) = a } ) ` y ) ) ) | 
						
							| 27 | 26 | ad2antrr |  |-  ( ( ( G e. FinUSGraph /\ V =/= (/) ) /\ A. v e. V ( ( VtxDeg ` G ) ` v ) = K ) -> ( # ` U_ y e. V ( ( a e. V |-> { s e. ( 2 WSPathsN G ) | ( s ` 1 ) = a } ) ` y ) ) = sum_ y e. V ( # ` ( ( a e. V |-> { s e. ( 2 WSPathsN G ) | ( s ` 1 ) = a } ) ` y ) ) ) | 
						
							| 28 | 1 5 | fusgreghash2wspv |  |-  ( G e. FinUSGraph -> A. v e. V ( ( ( VtxDeg ` G ) ` v ) = K -> ( # ` ( ( a e. V |-> { s e. ( 2 WSPathsN G ) | ( s ` 1 ) = a } ) ` v ) ) = ( K x. ( K - 1 ) ) ) ) | 
						
							| 29 |  | ralim |  |-  ( A. v e. V ( ( ( VtxDeg ` G ) ` v ) = K -> ( # ` ( ( a e. V |-> { s e. ( 2 WSPathsN G ) | ( s ` 1 ) = a } ) ` v ) ) = ( K x. ( K - 1 ) ) ) -> ( A. v e. V ( ( VtxDeg ` G ) ` v ) = K -> A. v e. V ( # ` ( ( a e. V |-> { s e. ( 2 WSPathsN G ) | ( s ` 1 ) = a } ) ` v ) ) = ( K x. ( K - 1 ) ) ) ) | 
						
							| 30 | 28 29 | syl |  |-  ( G e. FinUSGraph -> ( A. v e. V ( ( VtxDeg ` G ) ` v ) = K -> A. v e. V ( # ` ( ( a e. V |-> { s e. ( 2 WSPathsN G ) | ( s ` 1 ) = a } ) ` v ) ) = ( K x. ( K - 1 ) ) ) ) | 
						
							| 31 | 30 | adantr |  |-  ( ( G e. FinUSGraph /\ V =/= (/) ) -> ( A. v e. V ( ( VtxDeg ` G ) ` v ) = K -> A. v e. V ( # ` ( ( a e. V |-> { s e. ( 2 WSPathsN G ) | ( s ` 1 ) = a } ) ` v ) ) = ( K x. ( K - 1 ) ) ) ) | 
						
							| 32 | 31 | imp |  |-  ( ( ( G e. FinUSGraph /\ V =/= (/) ) /\ A. v e. V ( ( VtxDeg ` G ) ` v ) = K ) -> A. v e. V ( # ` ( ( a e. V |-> { s e. ( 2 WSPathsN G ) | ( s ` 1 ) = a } ) ` v ) ) = ( K x. ( K - 1 ) ) ) | 
						
							| 33 |  | 2fveq3 |  |-  ( v = y -> ( # ` ( ( a e. V |-> { s e. ( 2 WSPathsN G ) | ( s ` 1 ) = a } ) ` v ) ) = ( # ` ( ( a e. V |-> { s e. ( 2 WSPathsN G ) | ( s ` 1 ) = a } ) ` y ) ) ) | 
						
							| 34 | 33 | eqeq1d |  |-  ( v = y -> ( ( # ` ( ( a e. V |-> { s e. ( 2 WSPathsN G ) | ( s ` 1 ) = a } ) ` v ) ) = ( K x. ( K - 1 ) ) <-> ( # ` ( ( a e. V |-> { s e. ( 2 WSPathsN G ) | ( s ` 1 ) = a } ) ` y ) ) = ( K x. ( K - 1 ) ) ) ) | 
						
							| 35 | 34 | rspccva |  |-  ( ( A. v e. V ( # ` ( ( a e. V |-> { s e. ( 2 WSPathsN G ) | ( s ` 1 ) = a } ) ` v ) ) = ( K x. ( K - 1 ) ) /\ y e. V ) -> ( # ` ( ( a e. V |-> { s e. ( 2 WSPathsN G ) | ( s ` 1 ) = a } ) ` y ) ) = ( K x. ( K - 1 ) ) ) | 
						
							| 36 | 32 35 | sylan |  |-  ( ( ( ( G e. FinUSGraph /\ V =/= (/) ) /\ A. v e. V ( ( VtxDeg ` G ) ` v ) = K ) /\ y e. V ) -> ( # ` ( ( a e. V |-> { s e. ( 2 WSPathsN G ) | ( s ` 1 ) = a } ) ` y ) ) = ( K x. ( K - 1 ) ) ) | 
						
							| 37 | 36 | sumeq2dv |  |-  ( ( ( G e. FinUSGraph /\ V =/= (/) ) /\ A. v e. V ( ( VtxDeg ` G ) ` v ) = K ) -> sum_ y e. V ( # ` ( ( a e. V |-> { s e. ( 2 WSPathsN G ) | ( s ` 1 ) = a } ) ` y ) ) = sum_ y e. V ( K x. ( K - 1 ) ) ) | 
						
							| 38 | 9 | adantr |  |-  ( ( G e. FinUSGraph /\ V =/= (/) ) -> V e. Fin ) | 
						
							| 39 |  | eqid |  |-  ( VtxDeg ` G ) = ( VtxDeg ` G ) | 
						
							| 40 | 1 39 | fusgrregdegfi |  |-  ( ( G e. FinUSGraph /\ V =/= (/) ) -> ( A. v e. V ( ( VtxDeg ` G ) ` v ) = K -> K e. NN0 ) ) | 
						
							| 41 | 40 | imp |  |-  ( ( ( G e. FinUSGraph /\ V =/= (/) ) /\ A. v e. V ( ( VtxDeg ` G ) ` v ) = K ) -> K e. NN0 ) | 
						
							| 42 | 41 | nn0cnd |  |-  ( ( ( G e. FinUSGraph /\ V =/= (/) ) /\ A. v e. V ( ( VtxDeg ` G ) ` v ) = K ) -> K e. CC ) | 
						
							| 43 |  | kcnktkm1cn |  |-  ( K e. CC -> ( K x. ( K - 1 ) ) e. CC ) | 
						
							| 44 | 42 43 | syl |  |-  ( ( ( G e. FinUSGraph /\ V =/= (/) ) /\ A. v e. V ( ( VtxDeg ` G ) ` v ) = K ) -> ( K x. ( K - 1 ) ) e. CC ) | 
						
							| 45 |  | fsumconst |  |-  ( ( V e. Fin /\ ( K x. ( K - 1 ) ) e. CC ) -> sum_ y e. V ( K x. ( K - 1 ) ) = ( ( # ` V ) x. ( K x. ( K - 1 ) ) ) ) | 
						
							| 46 | 38 44 45 | syl2an2r |  |-  ( ( ( G e. FinUSGraph /\ V =/= (/) ) /\ A. v e. V ( ( VtxDeg ` G ) ` v ) = K ) -> sum_ y e. V ( K x. ( K - 1 ) ) = ( ( # ` V ) x. ( K x. ( K - 1 ) ) ) ) | 
						
							| 47 | 37 46 | eqtrd |  |-  ( ( ( G e. FinUSGraph /\ V =/= (/) ) /\ A. v e. V ( ( VtxDeg ` G ) ` v ) = K ) -> sum_ y e. V ( # ` ( ( a e. V |-> { s e. ( 2 WSPathsN G ) | ( s ` 1 ) = a } ) ` y ) ) = ( ( # ` V ) x. ( K x. ( K - 1 ) ) ) ) | 
						
							| 48 | 8 27 47 | 3eqtrd |  |-  ( ( ( G e. FinUSGraph /\ V =/= (/) ) /\ A. v e. V ( ( VtxDeg ` G ) ` v ) = K ) -> ( # ` ( 2 WSPathsN G ) ) = ( ( # ` V ) x. ( K x. ( K - 1 ) ) ) ) | 
						
							| 49 | 48 | ex |  |-  ( ( G e. FinUSGraph /\ V =/= (/) ) -> ( A. v e. V ( ( VtxDeg ` G ) ` v ) = K -> ( # ` ( 2 WSPathsN G ) ) = ( ( # ` V ) x. ( K x. ( K - 1 ) ) ) ) ) |