| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frrusgrord0.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | frgrusgr |  |-  ( G e. FriendGraph -> G e. USGraph ) | 
						
							| 3 | 2 | anim1i |  |-  ( ( G e. FriendGraph /\ V e. Fin ) -> ( G e. USGraph /\ V e. Fin ) ) | 
						
							| 4 | 1 | isfusgr |  |-  ( G e. FinUSGraph <-> ( G e. USGraph /\ V e. Fin ) ) | 
						
							| 5 | 3 4 | sylibr |  |-  ( ( G e. FriendGraph /\ V e. Fin ) -> G e. FinUSGraph ) | 
						
							| 6 |  | eqid |  |-  ( VtxDeg ` G ) = ( VtxDeg ` G ) | 
						
							| 7 | 1 6 | fusgrregdegfi |  |-  ( ( G e. FinUSGraph /\ V =/= (/) ) -> ( A. v e. V ( ( VtxDeg ` G ) ` v ) = K -> K e. NN0 ) ) | 
						
							| 8 | 5 7 | stoic3 |  |-  ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) -> ( A. v e. V ( ( VtxDeg ` G ) ` v ) = K -> K e. NN0 ) ) | 
						
							| 9 | 8 | imp |  |-  ( ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) /\ A. v e. V ( ( VtxDeg ` G ) ` v ) = K ) -> K e. NN0 ) | 
						
							| 10 | 9 | nn0cnd |  |-  ( ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) /\ A. v e. V ( ( VtxDeg ` G ) ` v ) = K ) -> K e. CC ) | 
						
							| 11 |  | hashcl |  |-  ( V e. Fin -> ( # ` V ) e. NN0 ) | 
						
							| 12 | 11 | nn0cnd |  |-  ( V e. Fin -> ( # ` V ) e. CC ) | 
						
							| 13 | 12 | 3ad2ant2 |  |-  ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) -> ( # ` V ) e. CC ) | 
						
							| 14 | 13 | adantr |  |-  ( ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) /\ A. v e. V ( ( VtxDeg ` G ) ` v ) = K ) -> ( # ` V ) e. CC ) | 
						
							| 15 |  | hasheq0 |  |-  ( V e. Fin -> ( ( # ` V ) = 0 <-> V = (/) ) ) | 
						
							| 16 | 15 | biimpd |  |-  ( V e. Fin -> ( ( # ` V ) = 0 -> V = (/) ) ) | 
						
							| 17 | 16 | necon3d |  |-  ( V e. Fin -> ( V =/= (/) -> ( # ` V ) =/= 0 ) ) | 
						
							| 18 | 17 | imp |  |-  ( ( V e. Fin /\ V =/= (/) ) -> ( # ` V ) =/= 0 ) | 
						
							| 19 | 18 | 3adant1 |  |-  ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) -> ( # ` V ) =/= 0 ) | 
						
							| 20 | 19 | adantr |  |-  ( ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) /\ A. v e. V ( ( VtxDeg ` G ) ` v ) = K ) -> ( # ` V ) =/= 0 ) | 
						
							| 21 | 10 14 20 | 3jca |  |-  ( ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) /\ A. v e. V ( ( VtxDeg ` G ) ` v ) = K ) -> ( K e. CC /\ ( # ` V ) e. CC /\ ( # ` V ) =/= 0 ) ) |