| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frrusgrord0.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | frgrusgr | ⊢ ( 𝐺  ∈   FriendGraph   →  𝐺  ∈  USGraph ) | 
						
							| 3 | 2 | anim1i | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝑉  ∈  Fin )  →  ( 𝐺  ∈  USGraph  ∧  𝑉  ∈  Fin ) ) | 
						
							| 4 | 1 | isfusgr | ⊢ ( 𝐺  ∈  FinUSGraph  ↔  ( 𝐺  ∈  USGraph  ∧  𝑉  ∈  Fin ) ) | 
						
							| 5 | 3 4 | sylibr | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝑉  ∈  Fin )  →  𝐺  ∈  FinUSGraph ) | 
						
							| 6 |  | eqid | ⊢ ( VtxDeg ‘ 𝐺 )  =  ( VtxDeg ‘ 𝐺 ) | 
						
							| 7 | 1 6 | fusgrregdegfi | ⊢ ( ( 𝐺  ∈  FinUSGraph  ∧  𝑉  ≠  ∅ )  →  ( ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾  →  𝐾  ∈  ℕ0 ) ) | 
						
							| 8 | 5 7 | stoic3 | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  →  ( ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾  →  𝐾  ∈  ℕ0 ) ) | 
						
							| 9 | 8 | imp | ⊢ ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  ∧  ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾 )  →  𝐾  ∈  ℕ0 ) | 
						
							| 10 | 9 | nn0cnd | ⊢ ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  ∧  ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾 )  →  𝐾  ∈  ℂ ) | 
						
							| 11 |  | hashcl | ⊢ ( 𝑉  ∈  Fin  →  ( ♯ ‘ 𝑉 )  ∈  ℕ0 ) | 
						
							| 12 | 11 | nn0cnd | ⊢ ( 𝑉  ∈  Fin  →  ( ♯ ‘ 𝑉 )  ∈  ℂ ) | 
						
							| 13 | 12 | 3ad2ant2 | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  →  ( ♯ ‘ 𝑉 )  ∈  ℂ ) | 
						
							| 14 | 13 | adantr | ⊢ ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  ∧  ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾 )  →  ( ♯ ‘ 𝑉 )  ∈  ℂ ) | 
						
							| 15 |  | hasheq0 | ⊢ ( 𝑉  ∈  Fin  →  ( ( ♯ ‘ 𝑉 )  =  0  ↔  𝑉  =  ∅ ) ) | 
						
							| 16 | 15 | biimpd | ⊢ ( 𝑉  ∈  Fin  →  ( ( ♯ ‘ 𝑉 )  =  0  →  𝑉  =  ∅ ) ) | 
						
							| 17 | 16 | necon3d | ⊢ ( 𝑉  ∈  Fin  →  ( 𝑉  ≠  ∅  →  ( ♯ ‘ 𝑉 )  ≠  0 ) ) | 
						
							| 18 | 17 | imp | ⊢ ( ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  →  ( ♯ ‘ 𝑉 )  ≠  0 ) | 
						
							| 19 | 18 | 3adant1 | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  →  ( ♯ ‘ 𝑉 )  ≠  0 ) | 
						
							| 20 | 19 | adantr | ⊢ ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  ∧  ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾 )  →  ( ♯ ‘ 𝑉 )  ≠  0 ) | 
						
							| 21 | 10 14 20 | 3jca | ⊢ ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  ∧  ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾 )  →  ( 𝐾  ∈  ℂ  ∧  ( ♯ ‘ 𝑉 )  ∈  ℂ  ∧  ( ♯ ‘ 𝑉 )  ≠  0 ) ) |