| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frrusgrord0.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | frgrusgr |  |-  ( G e. FriendGraph -> G e. USGraph ) | 
						
							| 3 | 2 | anim1i |  |-  ( ( G e. FriendGraph /\ V e. Fin ) -> ( G e. USGraph /\ V e. Fin ) ) | 
						
							| 4 | 1 | isfusgr |  |-  ( G e. FinUSGraph <-> ( G e. USGraph /\ V e. Fin ) ) | 
						
							| 5 | 3 4 | sylibr |  |-  ( ( G e. FriendGraph /\ V e. Fin ) -> G e. FinUSGraph ) | 
						
							| 6 | 1 | fusgreghash2wsp |  |-  ( ( G e. FinUSGraph /\ V =/= (/) ) -> ( A. v e. V ( ( VtxDeg ` G ) ` v ) = K -> ( # ` ( 2 WSPathsN G ) ) = ( ( # ` V ) x. ( K x. ( K - 1 ) ) ) ) ) | 
						
							| 7 | 5 6 | stoic3 |  |-  ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) -> ( A. v e. V ( ( VtxDeg ` G ) ` v ) = K -> ( # ` ( 2 WSPathsN G ) ) = ( ( # ` V ) x. ( K x. ( K - 1 ) ) ) ) ) | 
						
							| 8 | 7 | imp |  |-  ( ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) /\ A. v e. V ( ( VtxDeg ` G ) ` v ) = K ) -> ( # ` ( 2 WSPathsN G ) ) = ( ( # ` V ) x. ( K x. ( K - 1 ) ) ) ) | 
						
							| 9 | 1 | frgrhash2wsp |  |-  ( ( G e. FriendGraph /\ V e. Fin ) -> ( # ` ( 2 WSPathsN G ) ) = ( ( # ` V ) x. ( ( # ` V ) - 1 ) ) ) | 
						
							| 10 | 9 | eqcomd |  |-  ( ( G e. FriendGraph /\ V e. Fin ) -> ( ( # ` V ) x. ( ( # ` V ) - 1 ) ) = ( # ` ( 2 WSPathsN G ) ) ) | 
						
							| 11 | 10 | eqeq1d |  |-  ( ( G e. FriendGraph /\ V e. Fin ) -> ( ( ( # ` V ) x. ( ( # ` V ) - 1 ) ) = ( ( # ` V ) x. ( K x. ( K - 1 ) ) ) <-> ( # ` ( 2 WSPathsN G ) ) = ( ( # ` V ) x. ( K x. ( K - 1 ) ) ) ) ) | 
						
							| 12 | 11 | 3adant3 |  |-  ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) -> ( ( ( # ` V ) x. ( ( # ` V ) - 1 ) ) = ( ( # ` V ) x. ( K x. ( K - 1 ) ) ) <-> ( # ` ( 2 WSPathsN G ) ) = ( ( # ` V ) x. ( K x. ( K - 1 ) ) ) ) ) | 
						
							| 13 | 12 | adantr |  |-  ( ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) /\ A. v e. V ( ( VtxDeg ` G ) ` v ) = K ) -> ( ( ( # ` V ) x. ( ( # ` V ) - 1 ) ) = ( ( # ` V ) x. ( K x. ( K - 1 ) ) ) <-> ( # ` ( 2 WSPathsN G ) ) = ( ( # ` V ) x. ( K x. ( K - 1 ) ) ) ) ) | 
						
							| 14 | 1 | frrusgrord0lem |  |-  ( ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) /\ A. v e. V ( ( VtxDeg ` G ) ` v ) = K ) -> ( K e. CC /\ ( # ` V ) e. CC /\ ( # ` V ) =/= 0 ) ) | 
						
							| 15 |  | peano2cnm |  |-  ( ( # ` V ) e. CC -> ( ( # ` V ) - 1 ) e. CC ) | 
						
							| 16 | 15 | 3ad2ant2 |  |-  ( ( K e. CC /\ ( # ` V ) e. CC /\ ( # ` V ) =/= 0 ) -> ( ( # ` V ) - 1 ) e. CC ) | 
						
							| 17 |  | kcnktkm1cn |  |-  ( K e. CC -> ( K x. ( K - 1 ) ) e. CC ) | 
						
							| 18 | 17 | 3ad2ant1 |  |-  ( ( K e. CC /\ ( # ` V ) e. CC /\ ( # ` V ) =/= 0 ) -> ( K x. ( K - 1 ) ) e. CC ) | 
						
							| 19 |  | simp2 |  |-  ( ( K e. CC /\ ( # ` V ) e. CC /\ ( # ` V ) =/= 0 ) -> ( # ` V ) e. CC ) | 
						
							| 20 |  | simp3 |  |-  ( ( K e. CC /\ ( # ` V ) e. CC /\ ( # ` V ) =/= 0 ) -> ( # ` V ) =/= 0 ) | 
						
							| 21 | 16 18 19 20 | mulcand |  |-  ( ( K e. CC /\ ( # ` V ) e. CC /\ ( # ` V ) =/= 0 ) -> ( ( ( # ` V ) x. ( ( # ` V ) - 1 ) ) = ( ( # ` V ) x. ( K x. ( K - 1 ) ) ) <-> ( ( # ` V ) - 1 ) = ( K x. ( K - 1 ) ) ) ) | 
						
							| 22 |  | npcan1 |  |-  ( ( # ` V ) e. CC -> ( ( ( # ` V ) - 1 ) + 1 ) = ( # ` V ) ) | 
						
							| 23 |  | oveq1 |  |-  ( ( ( # ` V ) - 1 ) = ( K x. ( K - 1 ) ) -> ( ( ( # ` V ) - 1 ) + 1 ) = ( ( K x. ( K - 1 ) ) + 1 ) ) | 
						
							| 24 | 22 23 | sylan9req |  |-  ( ( ( # ` V ) e. CC /\ ( ( # ` V ) - 1 ) = ( K x. ( K - 1 ) ) ) -> ( # ` V ) = ( ( K x. ( K - 1 ) ) + 1 ) ) | 
						
							| 25 | 24 | ex |  |-  ( ( # ` V ) e. CC -> ( ( ( # ` V ) - 1 ) = ( K x. ( K - 1 ) ) -> ( # ` V ) = ( ( K x. ( K - 1 ) ) + 1 ) ) ) | 
						
							| 26 | 25 | 3ad2ant2 |  |-  ( ( K e. CC /\ ( # ` V ) e. CC /\ ( # ` V ) =/= 0 ) -> ( ( ( # ` V ) - 1 ) = ( K x. ( K - 1 ) ) -> ( # ` V ) = ( ( K x. ( K - 1 ) ) + 1 ) ) ) | 
						
							| 27 | 21 26 | sylbid |  |-  ( ( K e. CC /\ ( # ` V ) e. CC /\ ( # ` V ) =/= 0 ) -> ( ( ( # ` V ) x. ( ( # ` V ) - 1 ) ) = ( ( # ` V ) x. ( K x. ( K - 1 ) ) ) -> ( # ` V ) = ( ( K x. ( K - 1 ) ) + 1 ) ) ) | 
						
							| 28 | 14 27 | syl |  |-  ( ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) /\ A. v e. V ( ( VtxDeg ` G ) ` v ) = K ) -> ( ( ( # ` V ) x. ( ( # ` V ) - 1 ) ) = ( ( # ` V ) x. ( K x. ( K - 1 ) ) ) -> ( # ` V ) = ( ( K x. ( K - 1 ) ) + 1 ) ) ) | 
						
							| 29 | 13 28 | sylbird |  |-  ( ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) /\ A. v e. V ( ( VtxDeg ` G ) ` v ) = K ) -> ( ( # ` ( 2 WSPathsN G ) ) = ( ( # ` V ) x. ( K x. ( K - 1 ) ) ) -> ( # ` V ) = ( ( K x. ( K - 1 ) ) + 1 ) ) ) | 
						
							| 30 | 8 29 | mpd |  |-  ( ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) /\ A. v e. V ( ( VtxDeg ` G ) ` v ) = K ) -> ( # ` V ) = ( ( K x. ( K - 1 ) ) + 1 ) ) | 
						
							| 31 | 30 | ex |  |-  ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) -> ( A. v e. V ( ( VtxDeg ` G ) ` v ) = K -> ( # ` V ) = ( ( K x. ( K - 1 ) ) + 1 ) ) ) |