| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frrusgrord0.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | rusgrrgr |  |-  ( G RegUSGraph K -> G RegGraph K ) | 
						
							| 3 |  | eqid |  |-  ( VtxDeg ` G ) = ( VtxDeg ` G ) | 
						
							| 4 | 1 3 | rgrprop |  |-  ( G RegGraph K -> ( K e. NN0* /\ A. v e. V ( ( VtxDeg ` G ) ` v ) = K ) ) | 
						
							| 5 | 2 4 | syl |  |-  ( G RegUSGraph K -> ( K e. NN0* /\ A. v e. V ( ( VtxDeg ` G ) ` v ) = K ) ) | 
						
							| 6 | 5 | simprd |  |-  ( G RegUSGraph K -> A. v e. V ( ( VtxDeg ` G ) ` v ) = K ) | 
						
							| 7 | 1 | frrusgrord0 |  |-  ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) -> ( A. v e. V ( ( VtxDeg ` G ) ` v ) = K -> ( # ` V ) = ( ( K x. ( K - 1 ) ) + 1 ) ) ) | 
						
							| 8 | 6 7 | syl5 |  |-  ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) -> ( G RegUSGraph K -> ( # ` V ) = ( ( K x. ( K - 1 ) ) + 1 ) ) ) | 
						
							| 9 | 8 | 3expb |  |-  ( ( G e. FriendGraph /\ ( V e. Fin /\ V =/= (/) ) ) -> ( G RegUSGraph K -> ( # ` V ) = ( ( K x. ( K - 1 ) ) + 1 ) ) ) | 
						
							| 10 | 9 | expcom |  |-  ( ( V e. Fin /\ V =/= (/) ) -> ( G e. FriendGraph -> ( G RegUSGraph K -> ( # ` V ) = ( ( K x. ( K - 1 ) ) + 1 ) ) ) ) | 
						
							| 11 | 10 | impd |  |-  ( ( V e. Fin /\ V =/= (/) ) -> ( ( G e. FriendGraph /\ G RegUSGraph K ) -> ( # ` V ) = ( ( K x. ( K - 1 ) ) + 1 ) ) ) |