| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frrusgrord0.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | rusgrrgr | ⊢ ( 𝐺  RegUSGraph  𝐾  →  𝐺  RegGraph  𝐾 ) | 
						
							| 3 |  | eqid | ⊢ ( VtxDeg ‘ 𝐺 )  =  ( VtxDeg ‘ 𝐺 ) | 
						
							| 4 | 1 3 | rgrprop | ⊢ ( 𝐺  RegGraph  𝐾  →  ( 𝐾  ∈  ℕ0*  ∧  ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾 ) ) | 
						
							| 5 | 2 4 | syl | ⊢ ( 𝐺  RegUSGraph  𝐾  →  ( 𝐾  ∈  ℕ0*  ∧  ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾 ) ) | 
						
							| 6 | 5 | simprd | ⊢ ( 𝐺  RegUSGraph  𝐾  →  ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾 ) | 
						
							| 7 | 1 | frrusgrord0 | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  →  ( ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾  →  ( ♯ ‘ 𝑉 )  =  ( ( 𝐾  ·  ( 𝐾  −  1 ) )  +  1 ) ) ) | 
						
							| 8 | 6 7 | syl5 | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  →  ( 𝐺  RegUSGraph  𝐾  →  ( ♯ ‘ 𝑉 )  =  ( ( 𝐾  ·  ( 𝐾  −  1 ) )  +  1 ) ) ) | 
						
							| 9 | 8 | 3expb | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ ) )  →  ( 𝐺  RegUSGraph  𝐾  →  ( ♯ ‘ 𝑉 )  =  ( ( 𝐾  ·  ( 𝐾  −  1 ) )  +  1 ) ) ) | 
						
							| 10 | 9 | expcom | ⊢ ( ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  →  ( 𝐺  ∈   FriendGraph   →  ( 𝐺  RegUSGraph  𝐾  →  ( ♯ ‘ 𝑉 )  =  ( ( 𝐾  ·  ( 𝐾  −  1 ) )  +  1 ) ) ) ) | 
						
							| 11 | 10 | impd | ⊢ ( ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  →  ( ( 𝐺  ∈   FriendGraph   ∧  𝐺  RegUSGraph  𝐾 )  →  ( ♯ ‘ 𝑉 )  =  ( ( 𝐾  ·  ( 𝐾  −  1 ) )  +  1 ) ) ) |