| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid | ⊢ ( Vtx ‘ 𝐺 )  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 | 1 | 2pthfrgr | ⊢ ( 𝐺  ∈   FriendGraph   →  ∀ 𝑘  ∈  ( Vtx ‘ 𝐺 ) ∀ 𝑛  ∈  ( ( Vtx ‘ 𝐺 )  ∖  { 𝑘 } ) ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( 𝑘 ( SPathsOn ‘ 𝐺 ) 𝑛 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2 ) ) | 
						
							| 3 |  | spthonpthon | ⊢ ( 𝑓 ( 𝑘 ( SPathsOn ‘ 𝐺 ) 𝑛 ) 𝑝  →  𝑓 ( 𝑘 ( PathsOn ‘ 𝐺 ) 𝑛 ) 𝑝 ) | 
						
							| 4 | 3 | adantr | ⊢ ( ( 𝑓 ( 𝑘 ( SPathsOn ‘ 𝐺 ) 𝑛 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2 )  →  𝑓 ( 𝑘 ( PathsOn ‘ 𝐺 ) 𝑛 ) 𝑝 ) | 
						
							| 5 | 4 | 2eximi | ⊢ ( ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( 𝑘 ( SPathsOn ‘ 𝐺 ) 𝑛 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2 )  →  ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑘 ( PathsOn ‘ 𝐺 ) 𝑛 ) 𝑝 ) | 
						
							| 6 | 5 | 2ralimi | ⊢ ( ∀ 𝑘  ∈  ( Vtx ‘ 𝐺 ) ∀ 𝑛  ∈  ( ( Vtx ‘ 𝐺 )  ∖  { 𝑘 } ) ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( 𝑘 ( SPathsOn ‘ 𝐺 ) 𝑛 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2 )  →  ∀ 𝑘  ∈  ( Vtx ‘ 𝐺 ) ∀ 𝑛  ∈  ( ( Vtx ‘ 𝐺 )  ∖  { 𝑘 } ) ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑘 ( PathsOn ‘ 𝐺 ) 𝑛 ) 𝑝 ) | 
						
							| 7 | 2 6 | syl | ⊢ ( 𝐺  ∈   FriendGraph   →  ∀ 𝑘  ∈  ( Vtx ‘ 𝐺 ) ∀ 𝑛  ∈  ( ( Vtx ‘ 𝐺 )  ∖  { 𝑘 } ) ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑘 ( PathsOn ‘ 𝐺 ) 𝑛 ) 𝑝 ) | 
						
							| 8 | 1 | isconngr1 | ⊢ ( 𝐺  ∈   FriendGraph   →  ( 𝐺  ∈  ConnGraph  ↔  ∀ 𝑘  ∈  ( Vtx ‘ 𝐺 ) ∀ 𝑛  ∈  ( ( Vtx ‘ 𝐺 )  ∖  { 𝑘 } ) ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑘 ( PathsOn ‘ 𝐺 ) 𝑛 ) 𝑝 ) ) | 
						
							| 9 | 7 8 | mpbird | ⊢ ( 𝐺  ∈   FriendGraph   →  𝐺  ∈  ConnGraph ) |