Metamath Proof Explorer


Theorem vdgn0frgrv2

Description: A vertex in a friendship graph with more than one vertex cannot have degree 0. (Contributed by Alexander van der Vekens, 9-Dec-2017) (Revised by AV, 4-Apr-2021)

Ref Expression
Hypothesis vdn1frgrv2.v 𝑉 = ( Vtx ‘ 𝐺 )
Assertion vdgn0frgrv2 ( ( 𝐺 ∈ FriendGraph ∧ 𝑁𝑉 ) → ( 1 < ( ♯ ‘ 𝑉 ) → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑁 ) ≠ 0 ) )

Proof

Step Hyp Ref Expression
1 vdn1frgrv2.v 𝑉 = ( Vtx ‘ 𝐺 )
2 frgrconngr ( 𝐺 ∈ FriendGraph → 𝐺 ∈ ConnGraph )
3 frgrusgr ( 𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph )
4 usgrumgr ( 𝐺 ∈ USGraph → 𝐺 ∈ UMGraph )
5 3 4 syl ( 𝐺 ∈ FriendGraph → 𝐺 ∈ UMGraph )
6 1 vdn0conngrumgrv2 ( ( ( 𝐺 ∈ ConnGraph ∧ 𝐺 ∈ UMGraph ) ∧ ( 𝑁𝑉 ∧ 1 < ( ♯ ‘ 𝑉 ) ) ) → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑁 ) ≠ 0 )
7 6 ex ( ( 𝐺 ∈ ConnGraph ∧ 𝐺 ∈ UMGraph ) → ( ( 𝑁𝑉 ∧ 1 < ( ♯ ‘ 𝑉 ) ) → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑁 ) ≠ 0 ) )
8 2 5 7 syl2anc ( 𝐺 ∈ FriendGraph → ( ( 𝑁𝑉 ∧ 1 < ( ♯ ‘ 𝑉 ) ) → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑁 ) ≠ 0 ) )
9 8 expdimp ( ( 𝐺 ∈ FriendGraph ∧ 𝑁𝑉 ) → ( 1 < ( ♯ ‘ 𝑉 ) → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑁 ) ≠ 0 ) )