Step |
Hyp |
Ref |
Expression |
1 |
|
vdn1frgrv2.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
frgrusgr |
⊢ ( 𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph ) |
3 |
2
|
anim1i |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ 𝑁 ∈ 𝑉 ) → ( 𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉 ) ) |
4 |
3
|
adantr |
⊢ ( ( ( 𝐺 ∈ FriendGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 1 < ( ♯ ‘ 𝑉 ) ) → ( 𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉 ) ) |
5 |
|
eqid |
⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) |
6 |
|
eqid |
⊢ dom ( iEdg ‘ 𝐺 ) = dom ( iEdg ‘ 𝐺 ) |
7 |
|
eqid |
⊢ ( VtxDeg ‘ 𝐺 ) = ( VtxDeg ‘ 𝐺 ) |
8 |
1 5 6 7
|
vtxdusgrval |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉 ) → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑁 ) = ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑁 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } ) ) |
9 |
4 8
|
syl |
⊢ ( ( ( 𝐺 ∈ FriendGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 1 < ( ♯ ‘ 𝑉 ) ) → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑁 ) = ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑁 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } ) ) |
10 |
|
eqid |
⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) |
11 |
1 10
|
3cyclfrgrrn2 |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ 1 < ( ♯ ‘ 𝑉 ) ) → ∀ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 ∃ 𝑐 ∈ 𝑉 ( 𝑏 ≠ 𝑐 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑐 , 𝑎 } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
12 |
11
|
adantlr |
⊢ ( ( ( 𝐺 ∈ FriendGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 1 < ( ♯ ‘ 𝑉 ) ) → ∀ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 ∃ 𝑐 ∈ 𝑉 ( 𝑏 ≠ 𝑐 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑐 , 𝑎 } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
13 |
|
preq1 |
⊢ ( 𝑎 = 𝑁 → { 𝑎 , 𝑏 } = { 𝑁 , 𝑏 } ) |
14 |
13
|
eleq1d |
⊢ ( 𝑎 = 𝑁 → ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ↔ { 𝑁 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ) ) |
15 |
|
preq2 |
⊢ ( 𝑎 = 𝑁 → { 𝑐 , 𝑎 } = { 𝑐 , 𝑁 } ) |
16 |
15
|
eleq1d |
⊢ ( 𝑎 = 𝑁 → ( { 𝑐 , 𝑎 } ∈ ( Edg ‘ 𝐺 ) ↔ { 𝑐 , 𝑁 } ∈ ( Edg ‘ 𝐺 ) ) ) |
17 |
14 16
|
3anbi13d |
⊢ ( 𝑎 = 𝑁 → ( ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑐 , 𝑎 } ∈ ( Edg ‘ 𝐺 ) ) ↔ ( { 𝑁 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑐 , 𝑁 } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
18 |
17
|
anbi2d |
⊢ ( 𝑎 = 𝑁 → ( ( 𝑏 ≠ 𝑐 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑐 , 𝑎 } ∈ ( Edg ‘ 𝐺 ) ) ) ↔ ( 𝑏 ≠ 𝑐 ∧ ( { 𝑁 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑐 , 𝑁 } ∈ ( Edg ‘ 𝐺 ) ) ) ) ) |
19 |
18
|
2rexbidv |
⊢ ( 𝑎 = 𝑁 → ( ∃ 𝑏 ∈ 𝑉 ∃ 𝑐 ∈ 𝑉 ( 𝑏 ≠ 𝑐 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑐 , 𝑎 } ∈ ( Edg ‘ 𝐺 ) ) ) ↔ ∃ 𝑏 ∈ 𝑉 ∃ 𝑐 ∈ 𝑉 ( 𝑏 ≠ 𝑐 ∧ ( { 𝑁 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑐 , 𝑁 } ∈ ( Edg ‘ 𝐺 ) ) ) ) ) |
20 |
19
|
rspcva |
⊢ ( ( 𝑁 ∈ 𝑉 ∧ ∀ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 ∃ 𝑐 ∈ 𝑉 ( 𝑏 ≠ 𝑐 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑐 , 𝑎 } ∈ ( Edg ‘ 𝐺 ) ) ) ) → ∃ 𝑏 ∈ 𝑉 ∃ 𝑐 ∈ 𝑉 ( 𝑏 ≠ 𝑐 ∧ ( { 𝑁 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑐 , 𝑁 } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
21 |
2
|
adantl |
⊢ ( ( ( ( 𝑏 ≠ 𝑐 ∧ ( { 𝑁 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑐 , 𝑁 } ∈ ( Edg ‘ 𝐺 ) ) ) ∧ 𝑁 ∈ 𝑉 ) ∧ 𝐺 ∈ FriendGraph ) → 𝐺 ∈ USGraph ) |
22 |
|
simplll |
⊢ ( ( ( ( 𝑏 ≠ 𝑐 ∧ ( { 𝑁 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑐 , 𝑁 } ∈ ( Edg ‘ 𝐺 ) ) ) ∧ 𝑁 ∈ 𝑉 ) ∧ 𝐺 ∈ FriendGraph ) → 𝑏 ≠ 𝑐 ) |
23 |
|
3simpb |
⊢ ( ( { 𝑁 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑐 , 𝑁 } ∈ ( Edg ‘ 𝐺 ) ) → ( { 𝑁 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑐 , 𝑁 } ∈ ( Edg ‘ 𝐺 ) ) ) |
24 |
23
|
ad3antlr |
⊢ ( ( ( ( 𝑏 ≠ 𝑐 ∧ ( { 𝑁 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑐 , 𝑁 } ∈ ( Edg ‘ 𝐺 ) ) ) ∧ 𝑁 ∈ 𝑉 ) ∧ 𝐺 ∈ FriendGraph ) → ( { 𝑁 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑐 , 𝑁 } ∈ ( Edg ‘ 𝐺 ) ) ) |
25 |
5 10
|
usgr2edg1 |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑏 ≠ 𝑐 ) ∧ ( { 𝑁 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑐 , 𝑁 } ∈ ( Edg ‘ 𝐺 ) ) ) → ¬ ∃! 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) 𝑁 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) |
26 |
21 22 24 25
|
syl21anc |
⊢ ( ( ( ( 𝑏 ≠ 𝑐 ∧ ( { 𝑁 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑐 , 𝑁 } ∈ ( Edg ‘ 𝐺 ) ) ) ∧ 𝑁 ∈ 𝑉 ) ∧ 𝐺 ∈ FriendGraph ) → ¬ ∃! 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) 𝑁 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) |
27 |
26
|
a1d |
⊢ ( ( ( ( 𝑏 ≠ 𝑐 ∧ ( { 𝑁 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑐 , 𝑁 } ∈ ( Edg ‘ 𝐺 ) ) ) ∧ 𝑁 ∈ 𝑉 ) ∧ 𝐺 ∈ FriendGraph ) → ( 1 < ( ♯ ‘ 𝑉 ) → ¬ ∃! 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) 𝑁 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) ) |
28 |
27
|
ex |
⊢ ( ( ( 𝑏 ≠ 𝑐 ∧ ( { 𝑁 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑐 , 𝑁 } ∈ ( Edg ‘ 𝐺 ) ) ) ∧ 𝑁 ∈ 𝑉 ) → ( 𝐺 ∈ FriendGraph → ( 1 < ( ♯ ‘ 𝑉 ) → ¬ ∃! 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) 𝑁 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) ) ) |
29 |
28
|
ex |
⊢ ( ( 𝑏 ≠ 𝑐 ∧ ( { 𝑁 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑐 , 𝑁 } ∈ ( Edg ‘ 𝐺 ) ) ) → ( 𝑁 ∈ 𝑉 → ( 𝐺 ∈ FriendGraph → ( 1 < ( ♯ ‘ 𝑉 ) → ¬ ∃! 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) 𝑁 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) ) ) ) |
30 |
29
|
a1i |
⊢ ( ( 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) → ( ( 𝑏 ≠ 𝑐 ∧ ( { 𝑁 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑐 , 𝑁 } ∈ ( Edg ‘ 𝐺 ) ) ) → ( 𝑁 ∈ 𝑉 → ( 𝐺 ∈ FriendGraph → ( 1 < ( ♯ ‘ 𝑉 ) → ¬ ∃! 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) 𝑁 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) ) ) ) ) |
31 |
30
|
rexlimivv |
⊢ ( ∃ 𝑏 ∈ 𝑉 ∃ 𝑐 ∈ 𝑉 ( 𝑏 ≠ 𝑐 ∧ ( { 𝑁 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑐 , 𝑁 } ∈ ( Edg ‘ 𝐺 ) ) ) → ( 𝑁 ∈ 𝑉 → ( 𝐺 ∈ FriendGraph → ( 1 < ( ♯ ‘ 𝑉 ) → ¬ ∃! 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) 𝑁 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) ) ) ) |
32 |
20 31
|
syl |
⊢ ( ( 𝑁 ∈ 𝑉 ∧ ∀ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 ∃ 𝑐 ∈ 𝑉 ( 𝑏 ≠ 𝑐 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑐 , 𝑎 } ∈ ( Edg ‘ 𝐺 ) ) ) ) → ( 𝑁 ∈ 𝑉 → ( 𝐺 ∈ FriendGraph → ( 1 < ( ♯ ‘ 𝑉 ) → ¬ ∃! 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) 𝑁 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) ) ) ) |
33 |
32
|
ex |
⊢ ( 𝑁 ∈ 𝑉 → ( ∀ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 ∃ 𝑐 ∈ 𝑉 ( 𝑏 ≠ 𝑐 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑐 , 𝑎 } ∈ ( Edg ‘ 𝐺 ) ) ) → ( 𝑁 ∈ 𝑉 → ( 𝐺 ∈ FriendGraph → ( 1 < ( ♯ ‘ 𝑉 ) → ¬ ∃! 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) 𝑁 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) ) ) ) ) |
34 |
33
|
pm2.43a |
⊢ ( 𝑁 ∈ 𝑉 → ( ∀ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 ∃ 𝑐 ∈ 𝑉 ( 𝑏 ≠ 𝑐 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑐 , 𝑎 } ∈ ( Edg ‘ 𝐺 ) ) ) → ( 𝐺 ∈ FriendGraph → ( 1 < ( ♯ ‘ 𝑉 ) → ¬ ∃! 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) 𝑁 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) ) ) ) |
35 |
34
|
com24 |
⊢ ( 𝑁 ∈ 𝑉 → ( 1 < ( ♯ ‘ 𝑉 ) → ( 𝐺 ∈ FriendGraph → ( ∀ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 ∃ 𝑐 ∈ 𝑉 ( 𝑏 ≠ 𝑐 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑐 , 𝑎 } ∈ ( Edg ‘ 𝐺 ) ) ) → ¬ ∃! 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) 𝑁 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) ) ) ) |
36 |
35
|
com3r |
⊢ ( 𝐺 ∈ FriendGraph → ( 𝑁 ∈ 𝑉 → ( 1 < ( ♯ ‘ 𝑉 ) → ( ∀ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 ∃ 𝑐 ∈ 𝑉 ( 𝑏 ≠ 𝑐 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑐 , 𝑎 } ∈ ( Edg ‘ 𝐺 ) ) ) → ¬ ∃! 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) 𝑁 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) ) ) ) |
37 |
36
|
imp31 |
⊢ ( ( ( 𝐺 ∈ FriendGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 1 < ( ♯ ‘ 𝑉 ) ) → ( ∀ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 ∃ 𝑐 ∈ 𝑉 ( 𝑏 ≠ 𝑐 ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑐 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑐 , 𝑎 } ∈ ( Edg ‘ 𝐺 ) ) ) → ¬ ∃! 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) 𝑁 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) ) |
38 |
12 37
|
mpd |
⊢ ( ( ( 𝐺 ∈ FriendGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 1 < ( ♯ ‘ 𝑉 ) ) → ¬ ∃! 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) 𝑁 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) |
39 |
|
fvex |
⊢ ( iEdg ‘ 𝐺 ) ∈ V |
40 |
39
|
dmex |
⊢ dom ( iEdg ‘ 𝐺 ) ∈ V |
41 |
40
|
a1i |
⊢ ( ( ( 𝐺 ∈ FriendGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 1 < ( ♯ ‘ 𝑉 ) ) → dom ( iEdg ‘ 𝐺 ) ∈ V ) |
42 |
|
rabexg |
⊢ ( dom ( iEdg ‘ 𝐺 ) ∈ V → { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑁 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } ∈ V ) |
43 |
|
hash1snb |
⊢ ( { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑁 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } ∈ V → ( ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑁 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } ) = 1 ↔ ∃ 𝑖 { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑁 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } = { 𝑖 } ) ) |
44 |
41 42 43
|
3syl |
⊢ ( ( ( 𝐺 ∈ FriendGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 1 < ( ♯ ‘ 𝑉 ) ) → ( ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑁 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } ) = 1 ↔ ∃ 𝑖 { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑁 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } = { 𝑖 } ) ) |
45 |
|
reusn |
⊢ ( ∃! 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) 𝑁 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ↔ ∃ 𝑖 { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑁 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } = { 𝑖 } ) |
46 |
44 45
|
bitr4di |
⊢ ( ( ( 𝐺 ∈ FriendGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 1 < ( ♯ ‘ 𝑉 ) ) → ( ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑁 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } ) = 1 ↔ ∃! 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) 𝑁 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) ) |
47 |
46
|
necon3abid |
⊢ ( ( ( 𝐺 ∈ FriendGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 1 < ( ♯ ‘ 𝑉 ) ) → ( ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑁 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } ) ≠ 1 ↔ ¬ ∃! 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) 𝑁 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) ) |
48 |
38 47
|
mpbird |
⊢ ( ( ( 𝐺 ∈ FriendGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 1 < ( ♯ ‘ 𝑉 ) ) → ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑁 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } ) ≠ 1 ) |
49 |
9 48
|
eqnetrd |
⊢ ( ( ( 𝐺 ∈ FriendGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 1 < ( ♯ ‘ 𝑉 ) ) → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑁 ) ≠ 1 ) |
50 |
49
|
ex |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ 𝑁 ∈ 𝑉 ) → ( 1 < ( ♯ ‘ 𝑉 ) → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑁 ) ≠ 1 ) ) |