| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vdn0conngrv2.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
| 2 |
|
eqid |
⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) |
| 3 |
|
eqid |
⊢ dom ( iEdg ‘ 𝐺 ) = dom ( iEdg ‘ 𝐺 ) |
| 4 |
|
eqid |
⊢ ( VtxDeg ‘ 𝐺 ) = ( VtxDeg ‘ 𝐺 ) |
| 5 |
1 2 3 4
|
vtxdumgrval |
⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉 ) → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑁 ) = ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑁 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } ) ) |
| 6 |
5
|
ad2ant2lr |
⊢ ( ( ( 𝐺 ∈ ConnGraph ∧ 𝐺 ∈ UMGraph ) ∧ ( 𝑁 ∈ 𝑉 ∧ 1 < ( ♯ ‘ 𝑉 ) ) ) → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑁 ) = ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑁 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } ) ) |
| 7 |
|
umgruhgr |
⊢ ( 𝐺 ∈ UMGraph → 𝐺 ∈ UHGraph ) |
| 8 |
2
|
uhgrfun |
⊢ ( 𝐺 ∈ UHGraph → Fun ( iEdg ‘ 𝐺 ) ) |
| 9 |
|
funfn |
⊢ ( Fun ( iEdg ‘ 𝐺 ) ↔ ( iEdg ‘ 𝐺 ) Fn dom ( iEdg ‘ 𝐺 ) ) |
| 10 |
9
|
biimpi |
⊢ ( Fun ( iEdg ‘ 𝐺 ) → ( iEdg ‘ 𝐺 ) Fn dom ( iEdg ‘ 𝐺 ) ) |
| 11 |
7 8 10
|
3syl |
⊢ ( 𝐺 ∈ UMGraph → ( iEdg ‘ 𝐺 ) Fn dom ( iEdg ‘ 𝐺 ) ) |
| 12 |
11
|
adantl |
⊢ ( ( 𝐺 ∈ ConnGraph ∧ 𝐺 ∈ UMGraph ) → ( iEdg ‘ 𝐺 ) Fn dom ( iEdg ‘ 𝐺 ) ) |
| 13 |
12
|
adantr |
⊢ ( ( ( 𝐺 ∈ ConnGraph ∧ 𝐺 ∈ UMGraph ) ∧ ( 𝑁 ∈ 𝑉 ∧ 1 < ( ♯ ‘ 𝑉 ) ) ) → ( iEdg ‘ 𝐺 ) Fn dom ( iEdg ‘ 𝐺 ) ) |
| 14 |
|
simpl |
⊢ ( ( 𝐺 ∈ ConnGraph ∧ 𝐺 ∈ UMGraph ) → 𝐺 ∈ ConnGraph ) |
| 15 |
14
|
adantr |
⊢ ( ( ( 𝐺 ∈ ConnGraph ∧ 𝐺 ∈ UMGraph ) ∧ ( 𝑁 ∈ 𝑉 ∧ 1 < ( ♯ ‘ 𝑉 ) ) ) → 𝐺 ∈ ConnGraph ) |
| 16 |
|
simpl |
⊢ ( ( 𝑁 ∈ 𝑉 ∧ 1 < ( ♯ ‘ 𝑉 ) ) → 𝑁 ∈ 𝑉 ) |
| 17 |
16
|
adantl |
⊢ ( ( ( 𝐺 ∈ ConnGraph ∧ 𝐺 ∈ UMGraph ) ∧ ( 𝑁 ∈ 𝑉 ∧ 1 < ( ♯ ‘ 𝑉 ) ) ) → 𝑁 ∈ 𝑉 ) |
| 18 |
|
simprr |
⊢ ( ( ( 𝐺 ∈ ConnGraph ∧ 𝐺 ∈ UMGraph ) ∧ ( 𝑁 ∈ 𝑉 ∧ 1 < ( ♯ ‘ 𝑉 ) ) ) → 1 < ( ♯ ‘ 𝑉 ) ) |
| 19 |
1 2
|
conngrv2edg |
⊢ ( ( 𝐺 ∈ ConnGraph ∧ 𝑁 ∈ 𝑉 ∧ 1 < ( ♯ ‘ 𝑉 ) ) → ∃ 𝑒 ∈ ran ( iEdg ‘ 𝐺 ) 𝑁 ∈ 𝑒 ) |
| 20 |
15 17 18 19
|
syl3anc |
⊢ ( ( ( 𝐺 ∈ ConnGraph ∧ 𝐺 ∈ UMGraph ) ∧ ( 𝑁 ∈ 𝑉 ∧ 1 < ( ♯ ‘ 𝑉 ) ) ) → ∃ 𝑒 ∈ ran ( iEdg ‘ 𝐺 ) 𝑁 ∈ 𝑒 ) |
| 21 |
|
eleq2 |
⊢ ( 𝑒 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) → ( 𝑁 ∈ 𝑒 ↔ 𝑁 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) ) |
| 22 |
21
|
rexrn |
⊢ ( ( iEdg ‘ 𝐺 ) Fn dom ( iEdg ‘ 𝐺 ) → ( ∃ 𝑒 ∈ ran ( iEdg ‘ 𝐺 ) 𝑁 ∈ 𝑒 ↔ ∃ 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) 𝑁 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) ) |
| 23 |
22
|
biimpd |
⊢ ( ( iEdg ‘ 𝐺 ) Fn dom ( iEdg ‘ 𝐺 ) → ( ∃ 𝑒 ∈ ran ( iEdg ‘ 𝐺 ) 𝑁 ∈ 𝑒 → ∃ 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) 𝑁 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) ) |
| 24 |
13 20 23
|
sylc |
⊢ ( ( ( 𝐺 ∈ ConnGraph ∧ 𝐺 ∈ UMGraph ) ∧ ( 𝑁 ∈ 𝑉 ∧ 1 < ( ♯ ‘ 𝑉 ) ) ) → ∃ 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) 𝑁 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) |
| 25 |
|
dfrex2 |
⊢ ( ∃ 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) 𝑁 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ↔ ¬ ∀ 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ¬ 𝑁 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) |
| 26 |
24 25
|
sylib |
⊢ ( ( ( 𝐺 ∈ ConnGraph ∧ 𝐺 ∈ UMGraph ) ∧ ( 𝑁 ∈ 𝑉 ∧ 1 < ( ♯ ‘ 𝑉 ) ) ) → ¬ ∀ 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ¬ 𝑁 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) |
| 27 |
|
fvex |
⊢ ( iEdg ‘ 𝐺 ) ∈ V |
| 28 |
27
|
dmex |
⊢ dom ( iEdg ‘ 𝐺 ) ∈ V |
| 29 |
28
|
a1i |
⊢ ( ( ( 𝐺 ∈ ConnGraph ∧ 𝐺 ∈ UMGraph ) ∧ ( 𝑁 ∈ 𝑉 ∧ 1 < ( ♯ ‘ 𝑉 ) ) ) → dom ( iEdg ‘ 𝐺 ) ∈ V ) |
| 30 |
|
rabexg |
⊢ ( dom ( iEdg ‘ 𝐺 ) ∈ V → { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑁 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } ∈ V ) |
| 31 |
|
hasheq0 |
⊢ ( { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑁 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } ∈ V → ( ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑁 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } ) = 0 ↔ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑁 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } = ∅ ) ) |
| 32 |
29 30 31
|
3syl |
⊢ ( ( ( 𝐺 ∈ ConnGraph ∧ 𝐺 ∈ UMGraph ) ∧ ( 𝑁 ∈ 𝑉 ∧ 1 < ( ♯ ‘ 𝑉 ) ) ) → ( ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑁 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } ) = 0 ↔ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑁 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } = ∅ ) ) |
| 33 |
|
rabeq0 |
⊢ ( { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑁 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } = ∅ ↔ ∀ 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ¬ 𝑁 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) |
| 34 |
32 33
|
bitrdi |
⊢ ( ( ( 𝐺 ∈ ConnGraph ∧ 𝐺 ∈ UMGraph ) ∧ ( 𝑁 ∈ 𝑉 ∧ 1 < ( ♯ ‘ 𝑉 ) ) ) → ( ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑁 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } ) = 0 ↔ ∀ 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ¬ 𝑁 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) ) |
| 35 |
34
|
necon3abid |
⊢ ( ( ( 𝐺 ∈ ConnGraph ∧ 𝐺 ∈ UMGraph ) ∧ ( 𝑁 ∈ 𝑉 ∧ 1 < ( ♯ ‘ 𝑉 ) ) ) → ( ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑁 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } ) ≠ 0 ↔ ¬ ∀ 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ¬ 𝑁 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) ) |
| 36 |
26 35
|
mpbird |
⊢ ( ( ( 𝐺 ∈ ConnGraph ∧ 𝐺 ∈ UMGraph ) ∧ ( 𝑁 ∈ 𝑉 ∧ 1 < ( ♯ ‘ 𝑉 ) ) ) → ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑁 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } ) ≠ 0 ) |
| 37 |
6 36
|
eqnetrd |
⊢ ( ( ( 𝐺 ∈ ConnGraph ∧ 𝐺 ∈ UMGraph ) ∧ ( 𝑁 ∈ 𝑉 ∧ 1 < ( ♯ ‘ 𝑉 ) ) ) → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑁 ) ≠ 0 ) |