Step |
Hyp |
Ref |
Expression |
1 |
|
conngrv2edg.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
conngrv2edg.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
3 |
1
|
fvexi |
⊢ 𝑉 ∈ V |
4 |
|
simp3 |
⊢ ( ( 𝐺 ∈ ConnGraph ∧ 𝑁 ∈ 𝑉 ∧ 1 < ( ♯ ‘ 𝑉 ) ) → 1 < ( ♯ ‘ 𝑉 ) ) |
5 |
|
simp2 |
⊢ ( ( 𝐺 ∈ ConnGraph ∧ 𝑁 ∈ 𝑉 ∧ 1 < ( ♯ ‘ 𝑉 ) ) → 𝑁 ∈ 𝑉 ) |
6 |
|
hashgt12el2 |
⊢ ( ( 𝑉 ∈ V ∧ 1 < ( ♯ ‘ 𝑉 ) ∧ 𝑁 ∈ 𝑉 ) → ∃ 𝑣 ∈ 𝑉 𝑁 ≠ 𝑣 ) |
7 |
3 4 5 6
|
mp3an2i |
⊢ ( ( 𝐺 ∈ ConnGraph ∧ 𝑁 ∈ 𝑉 ∧ 1 < ( ♯ ‘ 𝑉 ) ) → ∃ 𝑣 ∈ 𝑉 𝑁 ≠ 𝑣 ) |
8 |
1
|
isconngr |
⊢ ( 𝐺 ∈ ConnGraph → ( 𝐺 ∈ ConnGraph ↔ ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑎 ( PathsOn ‘ 𝐺 ) 𝑏 ) 𝑝 ) ) |
9 |
|
oveq1 |
⊢ ( 𝑎 = 𝑁 → ( 𝑎 ( PathsOn ‘ 𝐺 ) 𝑏 ) = ( 𝑁 ( PathsOn ‘ 𝐺 ) 𝑏 ) ) |
10 |
9
|
breqd |
⊢ ( 𝑎 = 𝑁 → ( 𝑓 ( 𝑎 ( PathsOn ‘ 𝐺 ) 𝑏 ) 𝑝 ↔ 𝑓 ( 𝑁 ( PathsOn ‘ 𝐺 ) 𝑏 ) 𝑝 ) ) |
11 |
10
|
2exbidv |
⊢ ( 𝑎 = 𝑁 → ( ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑎 ( PathsOn ‘ 𝐺 ) 𝑏 ) 𝑝 ↔ ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑁 ( PathsOn ‘ 𝐺 ) 𝑏 ) 𝑝 ) ) |
12 |
|
oveq2 |
⊢ ( 𝑏 = 𝑣 → ( 𝑁 ( PathsOn ‘ 𝐺 ) 𝑏 ) = ( 𝑁 ( PathsOn ‘ 𝐺 ) 𝑣 ) ) |
13 |
12
|
breqd |
⊢ ( 𝑏 = 𝑣 → ( 𝑓 ( 𝑁 ( PathsOn ‘ 𝐺 ) 𝑏 ) 𝑝 ↔ 𝑓 ( 𝑁 ( PathsOn ‘ 𝐺 ) 𝑣 ) 𝑝 ) ) |
14 |
13
|
2exbidv |
⊢ ( 𝑏 = 𝑣 → ( ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑁 ( PathsOn ‘ 𝐺 ) 𝑏 ) 𝑝 ↔ ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑁 ( PathsOn ‘ 𝐺 ) 𝑣 ) 𝑝 ) ) |
15 |
11 14
|
rspc2v |
⊢ ( ( 𝑁 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉 ) → ( ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑎 ( PathsOn ‘ 𝐺 ) 𝑏 ) 𝑝 → ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑁 ( PathsOn ‘ 𝐺 ) 𝑣 ) 𝑝 ) ) |
16 |
15
|
ad2ant2r |
⊢ ( ( ( 𝑁 ∈ 𝑉 ∧ 1 < ( ♯ ‘ 𝑉 ) ) ∧ ( 𝑣 ∈ 𝑉 ∧ 𝑁 ≠ 𝑣 ) ) → ( ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑎 ( PathsOn ‘ 𝐺 ) 𝑏 ) 𝑝 → ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑁 ( PathsOn ‘ 𝐺 ) 𝑣 ) 𝑝 ) ) |
17 |
|
pthontrlon |
⊢ ( 𝑓 ( 𝑁 ( PathsOn ‘ 𝐺 ) 𝑣 ) 𝑝 → 𝑓 ( 𝑁 ( TrailsOn ‘ 𝐺 ) 𝑣 ) 𝑝 ) |
18 |
|
trlsonwlkon |
⊢ ( 𝑓 ( 𝑁 ( TrailsOn ‘ 𝐺 ) 𝑣 ) 𝑝 → 𝑓 ( 𝑁 ( WalksOn ‘ 𝐺 ) 𝑣 ) 𝑝 ) |
19 |
|
simpl |
⊢ ( ( 𝑓 ( 𝑁 ( WalksOn ‘ 𝐺 ) 𝑣 ) 𝑝 ∧ ( ( 𝑁 ∈ 𝑉 ∧ 1 < ( ♯ ‘ 𝑉 ) ) ∧ ( 𝑣 ∈ 𝑉 ∧ 𝑁 ≠ 𝑣 ) ) ) → 𝑓 ( 𝑁 ( WalksOn ‘ 𝐺 ) 𝑣 ) 𝑝 ) |
20 |
|
simprr |
⊢ ( ( ( 𝑁 ∈ 𝑉 ∧ 1 < ( ♯ ‘ 𝑉 ) ) ∧ ( 𝑣 ∈ 𝑉 ∧ 𝑁 ≠ 𝑣 ) ) → 𝑁 ≠ 𝑣 ) |
21 |
|
wlkon2n0 |
⊢ ( ( 𝑓 ( 𝑁 ( WalksOn ‘ 𝐺 ) 𝑣 ) 𝑝 ∧ 𝑁 ≠ 𝑣 ) → ( ♯ ‘ 𝑓 ) ≠ 0 ) |
22 |
20 21
|
sylan2 |
⊢ ( ( 𝑓 ( 𝑁 ( WalksOn ‘ 𝐺 ) 𝑣 ) 𝑝 ∧ ( ( 𝑁 ∈ 𝑉 ∧ 1 < ( ♯ ‘ 𝑉 ) ) ∧ ( 𝑣 ∈ 𝑉 ∧ 𝑁 ≠ 𝑣 ) ) ) → ( ♯ ‘ 𝑓 ) ≠ 0 ) |
23 |
19 22
|
jca |
⊢ ( ( 𝑓 ( 𝑁 ( WalksOn ‘ 𝐺 ) 𝑣 ) 𝑝 ∧ ( ( 𝑁 ∈ 𝑉 ∧ 1 < ( ♯ ‘ 𝑉 ) ) ∧ ( 𝑣 ∈ 𝑉 ∧ 𝑁 ≠ 𝑣 ) ) ) → ( 𝑓 ( 𝑁 ( WalksOn ‘ 𝐺 ) 𝑣 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) ≠ 0 ) ) |
24 |
23
|
ex |
⊢ ( 𝑓 ( 𝑁 ( WalksOn ‘ 𝐺 ) 𝑣 ) 𝑝 → ( ( ( 𝑁 ∈ 𝑉 ∧ 1 < ( ♯ ‘ 𝑉 ) ) ∧ ( 𝑣 ∈ 𝑉 ∧ 𝑁 ≠ 𝑣 ) ) → ( 𝑓 ( 𝑁 ( WalksOn ‘ 𝐺 ) 𝑣 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) ≠ 0 ) ) ) |
25 |
17 18 24
|
3syl |
⊢ ( 𝑓 ( 𝑁 ( PathsOn ‘ 𝐺 ) 𝑣 ) 𝑝 → ( ( ( 𝑁 ∈ 𝑉 ∧ 1 < ( ♯ ‘ 𝑉 ) ) ∧ ( 𝑣 ∈ 𝑉 ∧ 𝑁 ≠ 𝑣 ) ) → ( 𝑓 ( 𝑁 ( WalksOn ‘ 𝐺 ) 𝑣 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) ≠ 0 ) ) ) |
26 |
2
|
wlkonl1iedg |
⊢ ( ( 𝑓 ( 𝑁 ( WalksOn ‘ 𝐺 ) 𝑣 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) ≠ 0 ) → ∃ 𝑒 ∈ ran 𝐼 𝑁 ∈ 𝑒 ) |
27 |
25 26
|
syl6com |
⊢ ( ( ( 𝑁 ∈ 𝑉 ∧ 1 < ( ♯ ‘ 𝑉 ) ) ∧ ( 𝑣 ∈ 𝑉 ∧ 𝑁 ≠ 𝑣 ) ) → ( 𝑓 ( 𝑁 ( PathsOn ‘ 𝐺 ) 𝑣 ) 𝑝 → ∃ 𝑒 ∈ ran 𝐼 𝑁 ∈ 𝑒 ) ) |
28 |
27
|
exlimdvv |
⊢ ( ( ( 𝑁 ∈ 𝑉 ∧ 1 < ( ♯ ‘ 𝑉 ) ) ∧ ( 𝑣 ∈ 𝑉 ∧ 𝑁 ≠ 𝑣 ) ) → ( ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑁 ( PathsOn ‘ 𝐺 ) 𝑣 ) 𝑝 → ∃ 𝑒 ∈ ran 𝐼 𝑁 ∈ 𝑒 ) ) |
29 |
16 28
|
syldc |
⊢ ( ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑎 ( PathsOn ‘ 𝐺 ) 𝑏 ) 𝑝 → ( ( ( 𝑁 ∈ 𝑉 ∧ 1 < ( ♯ ‘ 𝑉 ) ) ∧ ( 𝑣 ∈ 𝑉 ∧ 𝑁 ≠ 𝑣 ) ) → ∃ 𝑒 ∈ ran 𝐼 𝑁 ∈ 𝑒 ) ) |
30 |
8 29
|
syl6bi |
⊢ ( 𝐺 ∈ ConnGraph → ( 𝐺 ∈ ConnGraph → ( ( ( 𝑁 ∈ 𝑉 ∧ 1 < ( ♯ ‘ 𝑉 ) ) ∧ ( 𝑣 ∈ 𝑉 ∧ 𝑁 ≠ 𝑣 ) ) → ∃ 𝑒 ∈ ran 𝐼 𝑁 ∈ 𝑒 ) ) ) |
31 |
30
|
pm2.43i |
⊢ ( 𝐺 ∈ ConnGraph → ( ( ( 𝑁 ∈ 𝑉 ∧ 1 < ( ♯ ‘ 𝑉 ) ) ∧ ( 𝑣 ∈ 𝑉 ∧ 𝑁 ≠ 𝑣 ) ) → ∃ 𝑒 ∈ ran 𝐼 𝑁 ∈ 𝑒 ) ) |
32 |
31
|
expd |
⊢ ( 𝐺 ∈ ConnGraph → ( ( 𝑁 ∈ 𝑉 ∧ 1 < ( ♯ ‘ 𝑉 ) ) → ( ( 𝑣 ∈ 𝑉 ∧ 𝑁 ≠ 𝑣 ) → ∃ 𝑒 ∈ ran 𝐼 𝑁 ∈ 𝑒 ) ) ) |
33 |
32
|
3impib |
⊢ ( ( 𝐺 ∈ ConnGraph ∧ 𝑁 ∈ 𝑉 ∧ 1 < ( ♯ ‘ 𝑉 ) ) → ( ( 𝑣 ∈ 𝑉 ∧ 𝑁 ≠ 𝑣 ) → ∃ 𝑒 ∈ ran 𝐼 𝑁 ∈ 𝑒 ) ) |
34 |
33
|
expd |
⊢ ( ( 𝐺 ∈ ConnGraph ∧ 𝑁 ∈ 𝑉 ∧ 1 < ( ♯ ‘ 𝑉 ) ) → ( 𝑣 ∈ 𝑉 → ( 𝑁 ≠ 𝑣 → ∃ 𝑒 ∈ ran 𝐼 𝑁 ∈ 𝑒 ) ) ) |
35 |
34
|
rexlimdv |
⊢ ( ( 𝐺 ∈ ConnGraph ∧ 𝑁 ∈ 𝑉 ∧ 1 < ( ♯ ‘ 𝑉 ) ) → ( ∃ 𝑣 ∈ 𝑉 𝑁 ≠ 𝑣 → ∃ 𝑒 ∈ ran 𝐼 𝑁 ∈ 𝑒 ) ) |
36 |
7 35
|
mpd |
⊢ ( ( 𝐺 ∈ ConnGraph ∧ 𝑁 ∈ 𝑉 ∧ 1 < ( ♯ ‘ 𝑉 ) ) → ∃ 𝑒 ∈ ran 𝐼 𝑁 ∈ 𝑒 ) |