| Step |
Hyp |
Ref |
Expression |
| 1 |
|
conngrv2edg.v |
|- V = ( Vtx ` G ) |
| 2 |
|
conngrv2edg.i |
|- I = ( iEdg ` G ) |
| 3 |
1
|
fvexi |
|- V e. _V |
| 4 |
|
simp3 |
|- ( ( G e. ConnGraph /\ N e. V /\ 1 < ( # ` V ) ) -> 1 < ( # ` V ) ) |
| 5 |
|
simp2 |
|- ( ( G e. ConnGraph /\ N e. V /\ 1 < ( # ` V ) ) -> N e. V ) |
| 6 |
|
hashgt12el2 |
|- ( ( V e. _V /\ 1 < ( # ` V ) /\ N e. V ) -> E. v e. V N =/= v ) |
| 7 |
3 4 5 6
|
mp3an2i |
|- ( ( G e. ConnGraph /\ N e. V /\ 1 < ( # ` V ) ) -> E. v e. V N =/= v ) |
| 8 |
1
|
isconngr |
|- ( G e. ConnGraph -> ( G e. ConnGraph <-> A. a e. V A. b e. V E. f E. p f ( a ( PathsOn ` G ) b ) p ) ) |
| 9 |
|
oveq1 |
|- ( a = N -> ( a ( PathsOn ` G ) b ) = ( N ( PathsOn ` G ) b ) ) |
| 10 |
9
|
breqd |
|- ( a = N -> ( f ( a ( PathsOn ` G ) b ) p <-> f ( N ( PathsOn ` G ) b ) p ) ) |
| 11 |
10
|
2exbidv |
|- ( a = N -> ( E. f E. p f ( a ( PathsOn ` G ) b ) p <-> E. f E. p f ( N ( PathsOn ` G ) b ) p ) ) |
| 12 |
|
oveq2 |
|- ( b = v -> ( N ( PathsOn ` G ) b ) = ( N ( PathsOn ` G ) v ) ) |
| 13 |
12
|
breqd |
|- ( b = v -> ( f ( N ( PathsOn ` G ) b ) p <-> f ( N ( PathsOn ` G ) v ) p ) ) |
| 14 |
13
|
2exbidv |
|- ( b = v -> ( E. f E. p f ( N ( PathsOn ` G ) b ) p <-> E. f E. p f ( N ( PathsOn ` G ) v ) p ) ) |
| 15 |
11 14
|
rspc2v |
|- ( ( N e. V /\ v e. V ) -> ( A. a e. V A. b e. V E. f E. p f ( a ( PathsOn ` G ) b ) p -> E. f E. p f ( N ( PathsOn ` G ) v ) p ) ) |
| 16 |
15
|
ad2ant2r |
|- ( ( ( N e. V /\ 1 < ( # ` V ) ) /\ ( v e. V /\ N =/= v ) ) -> ( A. a e. V A. b e. V E. f E. p f ( a ( PathsOn ` G ) b ) p -> E. f E. p f ( N ( PathsOn ` G ) v ) p ) ) |
| 17 |
|
pthontrlon |
|- ( f ( N ( PathsOn ` G ) v ) p -> f ( N ( TrailsOn ` G ) v ) p ) |
| 18 |
|
trlsonwlkon |
|- ( f ( N ( TrailsOn ` G ) v ) p -> f ( N ( WalksOn ` G ) v ) p ) |
| 19 |
|
simpl |
|- ( ( f ( N ( WalksOn ` G ) v ) p /\ ( ( N e. V /\ 1 < ( # ` V ) ) /\ ( v e. V /\ N =/= v ) ) ) -> f ( N ( WalksOn ` G ) v ) p ) |
| 20 |
|
simprr |
|- ( ( ( N e. V /\ 1 < ( # ` V ) ) /\ ( v e. V /\ N =/= v ) ) -> N =/= v ) |
| 21 |
|
wlkon2n0 |
|- ( ( f ( N ( WalksOn ` G ) v ) p /\ N =/= v ) -> ( # ` f ) =/= 0 ) |
| 22 |
20 21
|
sylan2 |
|- ( ( f ( N ( WalksOn ` G ) v ) p /\ ( ( N e. V /\ 1 < ( # ` V ) ) /\ ( v e. V /\ N =/= v ) ) ) -> ( # ` f ) =/= 0 ) |
| 23 |
19 22
|
jca |
|- ( ( f ( N ( WalksOn ` G ) v ) p /\ ( ( N e. V /\ 1 < ( # ` V ) ) /\ ( v e. V /\ N =/= v ) ) ) -> ( f ( N ( WalksOn ` G ) v ) p /\ ( # ` f ) =/= 0 ) ) |
| 24 |
23
|
ex |
|- ( f ( N ( WalksOn ` G ) v ) p -> ( ( ( N e. V /\ 1 < ( # ` V ) ) /\ ( v e. V /\ N =/= v ) ) -> ( f ( N ( WalksOn ` G ) v ) p /\ ( # ` f ) =/= 0 ) ) ) |
| 25 |
17 18 24
|
3syl |
|- ( f ( N ( PathsOn ` G ) v ) p -> ( ( ( N e. V /\ 1 < ( # ` V ) ) /\ ( v e. V /\ N =/= v ) ) -> ( f ( N ( WalksOn ` G ) v ) p /\ ( # ` f ) =/= 0 ) ) ) |
| 26 |
2
|
wlkonl1iedg |
|- ( ( f ( N ( WalksOn ` G ) v ) p /\ ( # ` f ) =/= 0 ) -> E. e e. ran I N e. e ) |
| 27 |
25 26
|
syl6com |
|- ( ( ( N e. V /\ 1 < ( # ` V ) ) /\ ( v e. V /\ N =/= v ) ) -> ( f ( N ( PathsOn ` G ) v ) p -> E. e e. ran I N e. e ) ) |
| 28 |
27
|
exlimdvv |
|- ( ( ( N e. V /\ 1 < ( # ` V ) ) /\ ( v e. V /\ N =/= v ) ) -> ( E. f E. p f ( N ( PathsOn ` G ) v ) p -> E. e e. ran I N e. e ) ) |
| 29 |
16 28
|
syldc |
|- ( A. a e. V A. b e. V E. f E. p f ( a ( PathsOn ` G ) b ) p -> ( ( ( N e. V /\ 1 < ( # ` V ) ) /\ ( v e. V /\ N =/= v ) ) -> E. e e. ran I N e. e ) ) |
| 30 |
8 29
|
biimtrdi |
|- ( G e. ConnGraph -> ( G e. ConnGraph -> ( ( ( N e. V /\ 1 < ( # ` V ) ) /\ ( v e. V /\ N =/= v ) ) -> E. e e. ran I N e. e ) ) ) |
| 31 |
30
|
pm2.43i |
|- ( G e. ConnGraph -> ( ( ( N e. V /\ 1 < ( # ` V ) ) /\ ( v e. V /\ N =/= v ) ) -> E. e e. ran I N e. e ) ) |
| 32 |
31
|
expd |
|- ( G e. ConnGraph -> ( ( N e. V /\ 1 < ( # ` V ) ) -> ( ( v e. V /\ N =/= v ) -> E. e e. ran I N e. e ) ) ) |
| 33 |
32
|
3impib |
|- ( ( G e. ConnGraph /\ N e. V /\ 1 < ( # ` V ) ) -> ( ( v e. V /\ N =/= v ) -> E. e e. ran I N e. e ) ) |
| 34 |
33
|
expd |
|- ( ( G e. ConnGraph /\ N e. V /\ 1 < ( # ` V ) ) -> ( v e. V -> ( N =/= v -> E. e e. ran I N e. e ) ) ) |
| 35 |
34
|
rexlimdv |
|- ( ( G e. ConnGraph /\ N e. V /\ 1 < ( # ` V ) ) -> ( E. v e. V N =/= v -> E. e e. ran I N e. e ) ) |
| 36 |
7 35
|
mpd |
|- ( ( G e. ConnGraph /\ N e. V /\ 1 < ( # ` V ) ) -> E. e e. ran I N e. e ) |