Description: A vertex in a connected multigraph with more than one vertex cannot have degree 0. (Contributed by Alexander van der Vekens, 9-Dec-2017) (Revised by AV, 4-Apr-2021)
Ref | Expression | ||
---|---|---|---|
Hypothesis | vdn0conngrv2.v | |
|
Assertion | vdn0conngrumgrv2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vdn0conngrv2.v | |
|
2 | eqid | |
|
3 | eqid | |
|
4 | eqid | |
|
5 | 1 2 3 4 | vtxdumgrval | |
6 | 5 | ad2ant2lr | |
7 | umgruhgr | |
|
8 | 2 | uhgrfun | |
9 | funfn | |
|
10 | 9 | biimpi | |
11 | 7 8 10 | 3syl | |
12 | 11 | adantl | |
13 | 12 | adantr | |
14 | simpl | |
|
15 | 14 | adantr | |
16 | simpl | |
|
17 | 16 | adantl | |
18 | simprr | |
|
19 | 1 2 | conngrv2edg | |
20 | 15 17 18 19 | syl3anc | |
21 | eleq2 | |
|
22 | 21 | rexrn | |
23 | 22 | biimpd | |
24 | 13 20 23 | sylc | |
25 | dfrex2 | |
|
26 | 24 25 | sylib | |
27 | fvex | |
|
28 | 27 | dmex | |
29 | 28 | a1i | |
30 | rabexg | |
|
31 | hasheq0 | |
|
32 | 29 30 31 | 3syl | |
33 | rabeq0 | |
|
34 | 32 33 | bitrdi | |
35 | 34 | necon3abid | |
36 | 26 35 | mpbird | |
37 | 6 36 | eqnetrd | |