Metamath Proof Explorer


Theorem vdn0conngrumgrv2

Description: A vertex in a connected multigraph with more than one vertex cannot have degree 0. (Contributed by Alexander van der Vekens, 9-Dec-2017) (Revised by AV, 4-Apr-2021)

Ref Expression
Hypothesis vdn0conngrv2.v V=VtxG
Assertion vdn0conngrumgrv2 GConnGraphGUMGraphNV1<VVtxDegGN0

Proof

Step Hyp Ref Expression
1 vdn0conngrv2.v V=VtxG
2 eqid iEdgG=iEdgG
3 eqid domiEdgG=domiEdgG
4 eqid VtxDegG=VtxDegG
5 1 2 3 4 vtxdumgrval GUMGraphNVVtxDegGN=xdomiEdgG|NiEdgGx
6 5 ad2ant2lr GConnGraphGUMGraphNV1<VVtxDegGN=xdomiEdgG|NiEdgGx
7 umgruhgr GUMGraphGUHGraph
8 2 uhgrfun GUHGraphFuniEdgG
9 funfn FuniEdgGiEdgGFndomiEdgG
10 9 biimpi FuniEdgGiEdgGFndomiEdgG
11 7 8 10 3syl GUMGraphiEdgGFndomiEdgG
12 11 adantl GConnGraphGUMGraphiEdgGFndomiEdgG
13 12 adantr GConnGraphGUMGraphNV1<ViEdgGFndomiEdgG
14 simpl GConnGraphGUMGraphGConnGraph
15 14 adantr GConnGraphGUMGraphNV1<VGConnGraph
16 simpl NV1<VNV
17 16 adantl GConnGraphGUMGraphNV1<VNV
18 simprr GConnGraphGUMGraphNV1<V1<V
19 1 2 conngrv2edg GConnGraphNV1<VeraniEdgGNe
20 15 17 18 19 syl3anc GConnGraphGUMGraphNV1<VeraniEdgGNe
21 eleq2 e=iEdgGxNeNiEdgGx
22 21 rexrn iEdgGFndomiEdgGeraniEdgGNexdomiEdgGNiEdgGx
23 22 biimpd iEdgGFndomiEdgGeraniEdgGNexdomiEdgGNiEdgGx
24 13 20 23 sylc GConnGraphGUMGraphNV1<VxdomiEdgGNiEdgGx
25 dfrex2 xdomiEdgGNiEdgGx¬xdomiEdgG¬NiEdgGx
26 24 25 sylib GConnGraphGUMGraphNV1<V¬xdomiEdgG¬NiEdgGx
27 fvex iEdgGV
28 27 dmex domiEdgGV
29 28 a1i GConnGraphGUMGraphNV1<VdomiEdgGV
30 rabexg domiEdgGVxdomiEdgG|NiEdgGxV
31 hasheq0 xdomiEdgG|NiEdgGxVxdomiEdgG|NiEdgGx=0xdomiEdgG|NiEdgGx=
32 29 30 31 3syl GConnGraphGUMGraphNV1<VxdomiEdgG|NiEdgGx=0xdomiEdgG|NiEdgGx=
33 rabeq0 xdomiEdgG|NiEdgGx=xdomiEdgG¬NiEdgGx
34 32 33 bitrdi GConnGraphGUMGraphNV1<VxdomiEdgG|NiEdgGx=0xdomiEdgG¬NiEdgGx
35 34 necon3abid GConnGraphGUMGraphNV1<VxdomiEdgG|NiEdgGx0¬xdomiEdgG¬NiEdgGx
36 26 35 mpbird GConnGraphGUMGraphNV1<VxdomiEdgG|NiEdgGx0
37 6 36 eqnetrd GConnGraphGUMGraphNV1<VVtxDegGN0