Metamath Proof Explorer


Theorem vtxdumgrval

Description: The value of the vertex degree function for a multigraph. (Contributed by Alexander van der Vekens, 20-Dec-2017) (Revised by AV, 23-Feb-2021)

Ref Expression
Hypotheses vtxdlfgrval.v V=VtxG
vtxdlfgrval.i I=iEdgG
vtxdlfgrval.a A=domI
vtxdlfgrval.d D=VtxDegG
Assertion vtxdumgrval GUMGraphUVDU=xA|UIx

Proof

Step Hyp Ref Expression
1 vtxdlfgrval.v V=VtxG
2 vtxdlfgrval.i I=iEdgG
3 vtxdlfgrval.a A=domI
4 vtxdlfgrval.d D=VtxDegG
5 1 2 umgrislfupgr GUMGraphGUPGraphI:domIx𝒫V|2x
6 3 eqcomi domI=A
7 6 feq2i I:domIx𝒫V|2xI:Ax𝒫V|2x
8 7 biimpi I:domIx𝒫V|2xI:Ax𝒫V|2x
9 5 8 simplbiim GUMGraphI:Ax𝒫V|2x
10 1 2 3 4 vtxdlfgrval I:Ax𝒫V|2xUVDU=xA|UIx
11 9 10 sylan GUMGraphUVDU=xA|UIx