| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vtxdlfgrval.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
| 2 |
|
vtxdlfgrval.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
| 3 |
|
vtxdlfgrval.a |
⊢ 𝐴 = dom 𝐼 |
| 4 |
|
vtxdlfgrval.d |
⊢ 𝐷 = ( VtxDeg ‘ 𝐺 ) |
| 5 |
1 2
|
umgrislfupgr |
⊢ ( 𝐺 ∈ UMGraph ↔ ( 𝐺 ∈ UPGraph ∧ 𝐼 : dom 𝐼 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) ) |
| 6 |
3
|
eqcomi |
⊢ dom 𝐼 = 𝐴 |
| 7 |
6
|
feq2i |
⊢ ( 𝐼 : dom 𝐼 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ↔ 𝐼 : 𝐴 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) |
| 8 |
7
|
biimpi |
⊢ ( 𝐼 : dom 𝐼 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } → 𝐼 : 𝐴 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) |
| 9 |
5 8
|
simplbiim |
⊢ ( 𝐺 ∈ UMGraph → 𝐼 : 𝐴 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) |
| 10 |
1 2 3 4
|
vtxdlfgrval |
⊢ ( ( 𝐼 : 𝐴 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ∧ 𝑈 ∈ 𝑉 ) → ( 𝐷 ‘ 𝑈 ) = ( ♯ ‘ { 𝑥 ∈ 𝐴 ∣ 𝑈 ∈ ( 𝐼 ‘ 𝑥 ) } ) ) |
| 11 |
9 10
|
sylan |
⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑈 ∈ 𝑉 ) → ( 𝐷 ‘ 𝑈 ) = ( ♯ ‘ { 𝑥 ∈ 𝐴 ∣ 𝑈 ∈ ( 𝐼 ‘ 𝑥 ) } ) ) |