Metamath Proof Explorer


Theorem vtxdumgrval

Description: The value of the vertex degree function for a multigraph. (Contributed by Alexander van der Vekens, 20-Dec-2017) (Revised by AV, 23-Feb-2021)

Ref Expression
Hypotheses vtxdlfgrval.v 𝑉 = ( Vtx ‘ 𝐺 )
vtxdlfgrval.i 𝐼 = ( iEdg ‘ 𝐺 )
vtxdlfgrval.a 𝐴 = dom 𝐼
vtxdlfgrval.d 𝐷 = ( VtxDeg ‘ 𝐺 )
Assertion vtxdumgrval ( ( 𝐺 ∈ UMGraph ∧ 𝑈𝑉 ) → ( 𝐷𝑈 ) = ( ♯ ‘ { 𝑥𝐴𝑈 ∈ ( 𝐼𝑥 ) } ) )

Proof

Step Hyp Ref Expression
1 vtxdlfgrval.v 𝑉 = ( Vtx ‘ 𝐺 )
2 vtxdlfgrval.i 𝐼 = ( iEdg ‘ 𝐺 )
3 vtxdlfgrval.a 𝐴 = dom 𝐼
4 vtxdlfgrval.d 𝐷 = ( VtxDeg ‘ 𝐺 )
5 1 2 umgrislfupgr ( 𝐺 ∈ UMGraph ↔ ( 𝐺 ∈ UPGraph ∧ 𝐼 : dom 𝐼 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) )
6 3 eqcomi dom 𝐼 = 𝐴
7 6 feq2i ( 𝐼 : dom 𝐼 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ↔ 𝐼 : 𝐴 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } )
8 7 biimpi ( 𝐼 : dom 𝐼 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } → 𝐼 : 𝐴 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } )
9 5 8 simplbiim ( 𝐺 ∈ UMGraph → 𝐼 : 𝐴 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } )
10 1 2 3 4 vtxdlfgrval ( ( 𝐼 : 𝐴 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ∧ 𝑈𝑉 ) → ( 𝐷𝑈 ) = ( ♯ ‘ { 𝑥𝐴𝑈 ∈ ( 𝐼𝑥 ) } ) )
11 9 10 sylan ( ( 𝐺 ∈ UMGraph ∧ 𝑈𝑉 ) → ( 𝐷𝑈 ) = ( ♯ ‘ { 𝑥𝐴𝑈 ∈ ( 𝐼𝑥 ) } ) )