Metamath Proof Explorer


Theorem frlmfibas

Description: The base set of the finite free module as a set exponential. (Contributed by AV, 6-Dec-2018)

Ref Expression
Hypotheses frlmfibas.f 𝐹 = ( 𝑅 freeLMod 𝐼 )
frlmfibas.n 𝑁 = ( Base ‘ 𝑅 )
Assertion frlmfibas ( ( 𝑅𝑉𝐼 ∈ Fin ) → ( 𝑁m 𝐼 ) = ( Base ‘ 𝐹 ) )

Proof

Step Hyp Ref Expression
1 frlmfibas.f 𝐹 = ( 𝑅 freeLMod 𝐼 )
2 frlmfibas.n 𝑁 = ( Base ‘ 𝑅 )
3 elmapi ( 𝑎 ∈ ( 𝑁m 𝐼 ) → 𝑎 : 𝐼𝑁 )
4 3 adantl ( ( 𝐼 ∈ Fin ∧ 𝑎 ∈ ( 𝑁m 𝐼 ) ) → 𝑎 : 𝐼𝑁 )
5 simpl ( ( 𝐼 ∈ Fin ∧ 𝑎 ∈ ( 𝑁m 𝐼 ) ) → 𝐼 ∈ Fin )
6 fvexd ( ( 𝐼 ∈ Fin ∧ 𝑎 ∈ ( 𝑁m 𝐼 ) ) → ( 0g𝑅 ) ∈ V )
7 4 5 6 fdmfifsupp ( ( 𝐼 ∈ Fin ∧ 𝑎 ∈ ( 𝑁m 𝐼 ) ) → 𝑎 finSupp ( 0g𝑅 ) )
8 7 ralrimiva ( 𝐼 ∈ Fin → ∀ 𝑎 ∈ ( 𝑁m 𝐼 ) 𝑎 finSupp ( 0g𝑅 ) )
9 8 adantl ( ( 𝑅𝑉𝐼 ∈ Fin ) → ∀ 𝑎 ∈ ( 𝑁m 𝐼 ) 𝑎 finSupp ( 0g𝑅 ) )
10 rabid2 ( ( 𝑁m 𝐼 ) = { 𝑎 ∈ ( 𝑁m 𝐼 ) ∣ 𝑎 finSupp ( 0g𝑅 ) } ↔ ∀ 𝑎 ∈ ( 𝑁m 𝐼 ) 𝑎 finSupp ( 0g𝑅 ) )
11 9 10 sylibr ( ( 𝑅𝑉𝐼 ∈ Fin ) → ( 𝑁m 𝐼 ) = { 𝑎 ∈ ( 𝑁m 𝐼 ) ∣ 𝑎 finSupp ( 0g𝑅 ) } )
12 eqid ( 0g𝑅 ) = ( 0g𝑅 )
13 eqid { 𝑎 ∈ ( 𝑁m 𝐼 ) ∣ 𝑎 finSupp ( 0g𝑅 ) } = { 𝑎 ∈ ( 𝑁m 𝐼 ) ∣ 𝑎 finSupp ( 0g𝑅 ) }
14 1 2 12 13 frlmbas ( ( 𝑅𝑉𝐼 ∈ Fin ) → { 𝑎 ∈ ( 𝑁m 𝐼 ) ∣ 𝑎 finSupp ( 0g𝑅 ) } = ( Base ‘ 𝐹 ) )
15 11 14 eqtrd ( ( 𝑅𝑉𝐼 ∈ Fin ) → ( 𝑁m 𝐼 ) = ( Base ‘ 𝐹 ) )