Metamath Proof Explorer


Theorem frnssb

Description: A function is a function into a subset of its codomain if all of its values are elements of this subset. (Contributed by AV, 7-Feb-2021)

Ref Expression
Assertion frnssb ( ( 𝑉𝑊 ∧ ∀ 𝑘𝐴 ( 𝐹𝑘 ) ∈ 𝑉 ) → ( 𝐹 : 𝐴𝑊𝐹 : 𝐴𝑉 ) )

Proof

Step Hyp Ref Expression
1 simpr ( ( 𝑉𝑊 ∧ ∀ 𝑘𝐴 ( 𝐹𝑘 ) ∈ 𝑉 ) → ∀ 𝑘𝐴 ( 𝐹𝑘 ) ∈ 𝑉 )
2 ffn ( 𝐹 : 𝐴𝑊𝐹 Fn 𝐴 )
3 1 2 anim12ci ( ( ( 𝑉𝑊 ∧ ∀ 𝑘𝐴 ( 𝐹𝑘 ) ∈ 𝑉 ) ∧ 𝐹 : 𝐴𝑊 ) → ( 𝐹 Fn 𝐴 ∧ ∀ 𝑘𝐴 ( 𝐹𝑘 ) ∈ 𝑉 ) )
4 ffnfv ( 𝐹 : 𝐴𝑉 ↔ ( 𝐹 Fn 𝐴 ∧ ∀ 𝑘𝐴 ( 𝐹𝑘 ) ∈ 𝑉 ) )
5 3 4 sylibr ( ( ( 𝑉𝑊 ∧ ∀ 𝑘𝐴 ( 𝐹𝑘 ) ∈ 𝑉 ) ∧ 𝐹 : 𝐴𝑊 ) → 𝐹 : 𝐴𝑉 )
6 simpl ( ( 𝑉𝑊 ∧ ∀ 𝑘𝐴 ( 𝐹𝑘 ) ∈ 𝑉 ) → 𝑉𝑊 )
7 6 anim1ci ( ( ( 𝑉𝑊 ∧ ∀ 𝑘𝐴 ( 𝐹𝑘 ) ∈ 𝑉 ) ∧ 𝐹 : 𝐴𝑉 ) → ( 𝐹 : 𝐴𝑉𝑉𝑊 ) )
8 fss ( ( 𝐹 : 𝐴𝑉𝑉𝑊 ) → 𝐹 : 𝐴𝑊 )
9 7 8 syl ( ( ( 𝑉𝑊 ∧ ∀ 𝑘𝐴 ( 𝐹𝑘 ) ∈ 𝑉 ) ∧ 𝐹 : 𝐴𝑉 ) → 𝐹 : 𝐴𝑊 )
10 5 9 impbida ( ( 𝑉𝑊 ∧ ∀ 𝑘𝐴 ( 𝐹𝑘 ) ∈ 𝑉 ) → ( 𝐹 : 𝐴𝑊𝐹 : 𝐴𝑉 ) )