| Step |
Hyp |
Ref |
Expression |
| 1 |
|
difss |
⊢ ( 𝐴 ∖ { 𝑋 } ) ⊆ 𝐴 |
| 2 |
|
fssres |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝐴 ∖ { 𝑋 } ) ⊆ 𝐴 ) → ( 𝐹 ↾ ( 𝐴 ∖ { 𝑋 } ) ) : ( 𝐴 ∖ { 𝑋 } ) ⟶ 𝐵 ) |
| 3 |
1 2
|
mpan2 |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( 𝐹 ↾ ( 𝐴 ∖ { 𝑋 } ) ) : ( 𝐴 ∖ { 𝑋 } ) ⟶ 𝐵 ) |
| 4 |
|
ffn |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝐹 Fn 𝐴 ) |
| 5 |
|
fnresdm |
⊢ ( 𝐹 Fn 𝐴 → ( 𝐹 ↾ 𝐴 ) = 𝐹 ) |
| 6 |
4 5
|
syl |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( 𝐹 ↾ 𝐴 ) = 𝐹 ) |
| 7 |
6
|
reseq1d |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( ( 𝐹 ↾ 𝐴 ) ↾ ( V ∖ { 𝑋 } ) ) = ( 𝐹 ↾ ( V ∖ { 𝑋 } ) ) ) |
| 8 |
|
resres |
⊢ ( ( 𝐹 ↾ 𝐴 ) ↾ ( V ∖ { 𝑋 } ) ) = ( 𝐹 ↾ ( 𝐴 ∩ ( V ∖ { 𝑋 } ) ) ) |
| 9 |
|
invdif |
⊢ ( 𝐴 ∩ ( V ∖ { 𝑋 } ) ) = ( 𝐴 ∖ { 𝑋 } ) |
| 10 |
9
|
reseq2i |
⊢ ( 𝐹 ↾ ( 𝐴 ∩ ( V ∖ { 𝑋 } ) ) ) = ( 𝐹 ↾ ( 𝐴 ∖ { 𝑋 } ) ) |
| 11 |
8 10
|
eqtri |
⊢ ( ( 𝐹 ↾ 𝐴 ) ↾ ( V ∖ { 𝑋 } ) ) = ( 𝐹 ↾ ( 𝐴 ∖ { 𝑋 } ) ) |
| 12 |
7 11
|
eqtr3di |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( 𝐹 ↾ ( V ∖ { 𝑋 } ) ) = ( 𝐹 ↾ ( 𝐴 ∖ { 𝑋 } ) ) ) |
| 13 |
12
|
feq1d |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( ( 𝐹 ↾ ( V ∖ { 𝑋 } ) ) : ( 𝐴 ∖ { 𝑋 } ) ⟶ 𝐵 ↔ ( 𝐹 ↾ ( 𝐴 ∖ { 𝑋 } ) ) : ( 𝐴 ∖ { 𝑋 } ) ⟶ 𝐵 ) ) |
| 14 |
3 13
|
mpbird |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( 𝐹 ↾ ( V ∖ { 𝑋 } ) ) : ( 𝐴 ∖ { 𝑋 } ) ⟶ 𝐵 ) |
| 15 |
14
|
adantl |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( 𝐹 ↾ ( V ∖ { 𝑋 } ) ) : ( 𝐴 ∖ { 𝑋 } ) ⟶ 𝐵 ) |
| 16 |
|
fsnunf2 |
⊢ ( ( ( 𝐹 ↾ ( V ∖ { 𝑋 } ) ) : ( 𝐴 ∖ { 𝑋 } ) ⟶ 𝐵 ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝐹 ↾ ( V ∖ { 𝑋 } ) ) ∪ { 〈 𝑋 , 𝑌 〉 } ) : 𝐴 ⟶ 𝐵 ) |
| 17 |
15 16
|
syl3an1 |
⊢ ( ( ( 𝐹 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝐹 ↾ ( V ∖ { 𝑋 } ) ) ∪ { 〈 𝑋 , 𝑌 〉 } ) : 𝐴 ⟶ 𝐵 ) |
| 18 |
|
simp1l |
⊢ ( ( ( 𝐹 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) → 𝐹 ∈ 𝑉 ) |
| 19 |
|
simp3 |
⊢ ( ( ( 𝐹 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) → 𝑌 ∈ 𝐵 ) |
| 20 |
|
setsval |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑌 ∈ 𝐵 ) → ( 𝐹 sSet 〈 𝑋 , 𝑌 〉 ) = ( ( 𝐹 ↾ ( V ∖ { 𝑋 } ) ) ∪ { 〈 𝑋 , 𝑌 〉 } ) ) |
| 21 |
20
|
feq1d |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝐹 sSet 〈 𝑋 , 𝑌 〉 ) : 𝐴 ⟶ 𝐵 ↔ ( ( 𝐹 ↾ ( V ∖ { 𝑋 } ) ) ∪ { 〈 𝑋 , 𝑌 〉 } ) : 𝐴 ⟶ 𝐵 ) ) |
| 22 |
18 19 21
|
syl2anc |
⊢ ( ( ( 𝐹 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝐹 sSet 〈 𝑋 , 𝑌 〉 ) : 𝐴 ⟶ 𝐵 ↔ ( ( 𝐹 ↾ ( V ∖ { 𝑋 } ) ) ∪ { 〈 𝑋 , 𝑌 〉 } ) : 𝐴 ⟶ 𝐵 ) ) |
| 23 |
17 22
|
mpbird |
⊢ ( ( ( 𝐹 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) → ( 𝐹 sSet 〈 𝑋 , 𝑌 〉 ) : 𝐴 ⟶ 𝐵 ) |