Metamath Proof Explorer


Theorem fsets

Description: The structure replacement function is a function. (Contributed by SO, 12-Jul-2018)

Ref Expression
Assertion fsets ( ( ( 𝐹𝑉𝐹 : 𝐴𝐵 ) ∧ 𝑋𝐴𝑌𝐵 ) → ( 𝐹 sSet ⟨ 𝑋 , 𝑌 ⟩ ) : 𝐴𝐵 )

Proof

Step Hyp Ref Expression
1 difss ( 𝐴 ∖ { 𝑋 } ) ⊆ 𝐴
2 fssres ( ( 𝐹 : 𝐴𝐵 ∧ ( 𝐴 ∖ { 𝑋 } ) ⊆ 𝐴 ) → ( 𝐹 ↾ ( 𝐴 ∖ { 𝑋 } ) ) : ( 𝐴 ∖ { 𝑋 } ) ⟶ 𝐵 )
3 1 2 mpan2 ( 𝐹 : 𝐴𝐵 → ( 𝐹 ↾ ( 𝐴 ∖ { 𝑋 } ) ) : ( 𝐴 ∖ { 𝑋 } ) ⟶ 𝐵 )
4 resres ( ( 𝐹𝐴 ) ↾ ( V ∖ { 𝑋 } ) ) = ( 𝐹 ↾ ( 𝐴 ∩ ( V ∖ { 𝑋 } ) ) )
5 invdif ( 𝐴 ∩ ( V ∖ { 𝑋 } ) ) = ( 𝐴 ∖ { 𝑋 } )
6 5 reseq2i ( 𝐹 ↾ ( 𝐴 ∩ ( V ∖ { 𝑋 } ) ) ) = ( 𝐹 ↾ ( 𝐴 ∖ { 𝑋 } ) )
7 4 6 eqtri ( ( 𝐹𝐴 ) ↾ ( V ∖ { 𝑋 } ) ) = ( 𝐹 ↾ ( 𝐴 ∖ { 𝑋 } ) )
8 ffn ( 𝐹 : 𝐴𝐵𝐹 Fn 𝐴 )
9 fnresdm ( 𝐹 Fn 𝐴 → ( 𝐹𝐴 ) = 𝐹 )
10 8 9 syl ( 𝐹 : 𝐴𝐵 → ( 𝐹𝐴 ) = 𝐹 )
11 10 reseq1d ( 𝐹 : 𝐴𝐵 → ( ( 𝐹𝐴 ) ↾ ( V ∖ { 𝑋 } ) ) = ( 𝐹 ↾ ( V ∖ { 𝑋 } ) ) )
12 7 11 syl5reqr ( 𝐹 : 𝐴𝐵 → ( 𝐹 ↾ ( V ∖ { 𝑋 } ) ) = ( 𝐹 ↾ ( 𝐴 ∖ { 𝑋 } ) ) )
13 12 feq1d ( 𝐹 : 𝐴𝐵 → ( ( 𝐹 ↾ ( V ∖ { 𝑋 } ) ) : ( 𝐴 ∖ { 𝑋 } ) ⟶ 𝐵 ↔ ( 𝐹 ↾ ( 𝐴 ∖ { 𝑋 } ) ) : ( 𝐴 ∖ { 𝑋 } ) ⟶ 𝐵 ) )
14 3 13 mpbird ( 𝐹 : 𝐴𝐵 → ( 𝐹 ↾ ( V ∖ { 𝑋 } ) ) : ( 𝐴 ∖ { 𝑋 } ) ⟶ 𝐵 )
15 14 adantl ( ( 𝐹𝑉𝐹 : 𝐴𝐵 ) → ( 𝐹 ↾ ( V ∖ { 𝑋 } ) ) : ( 𝐴 ∖ { 𝑋 } ) ⟶ 𝐵 )
16 fsnunf2 ( ( ( 𝐹 ↾ ( V ∖ { 𝑋 } ) ) : ( 𝐴 ∖ { 𝑋 } ) ⟶ 𝐵𝑋𝐴𝑌𝐵 ) → ( ( 𝐹 ↾ ( V ∖ { 𝑋 } ) ) ∪ { ⟨ 𝑋 , 𝑌 ⟩ } ) : 𝐴𝐵 )
17 15 16 syl3an1 ( ( ( 𝐹𝑉𝐹 : 𝐴𝐵 ) ∧ 𝑋𝐴𝑌𝐵 ) → ( ( 𝐹 ↾ ( V ∖ { 𝑋 } ) ) ∪ { ⟨ 𝑋 , 𝑌 ⟩ } ) : 𝐴𝐵 )
18 simp1l ( ( ( 𝐹𝑉𝐹 : 𝐴𝐵 ) ∧ 𝑋𝐴𝑌𝐵 ) → 𝐹𝑉 )
19 simp3 ( ( ( 𝐹𝑉𝐹 : 𝐴𝐵 ) ∧ 𝑋𝐴𝑌𝐵 ) → 𝑌𝐵 )
20 setsval ( ( 𝐹𝑉𝑌𝐵 ) → ( 𝐹 sSet ⟨ 𝑋 , 𝑌 ⟩ ) = ( ( 𝐹 ↾ ( V ∖ { 𝑋 } ) ) ∪ { ⟨ 𝑋 , 𝑌 ⟩ } ) )
21 20 feq1d ( ( 𝐹𝑉𝑌𝐵 ) → ( ( 𝐹 sSet ⟨ 𝑋 , 𝑌 ⟩ ) : 𝐴𝐵 ↔ ( ( 𝐹 ↾ ( V ∖ { 𝑋 } ) ) ∪ { ⟨ 𝑋 , 𝑌 ⟩ } ) : 𝐴𝐵 ) )
22 18 19 21 syl2anc ( ( ( 𝐹𝑉𝐹 : 𝐴𝐵 ) ∧ 𝑋𝐴𝑌𝐵 ) → ( ( 𝐹 sSet ⟨ 𝑋 , 𝑌 ⟩ ) : 𝐴𝐵 ↔ ( ( 𝐹 ↾ ( V ∖ { 𝑋 } ) ) ∪ { ⟨ 𝑋 , 𝑌 ⟩ } ) : 𝐴𝐵 ) )
23 17 22 mpbird ( ( ( 𝐹𝑉𝐹 : 𝐴𝐵 ) ∧ 𝑋𝐴𝑌𝐵 ) → ( 𝐹 sSet ⟨ 𝑋 , 𝑌 ⟩ ) : 𝐴𝐵 )