| Step |
Hyp |
Ref |
Expression |
| 1 |
|
funrel |
⊢ ( Fun 𝐴 → Rel 𝐴 ) |
| 2 |
|
releldmdifi |
⊢ ( ( Rel 𝐴 ∧ 𝐵 ⊆ 𝐴 ) → ( 𝐶 ∈ ( dom 𝐴 ∖ dom 𝐵 ) → ∃ 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ( 1st ‘ 𝑥 ) = 𝐶 ) ) |
| 3 |
1 2
|
sylan |
⊢ ( ( Fun 𝐴 ∧ 𝐵 ⊆ 𝐴 ) → ( 𝐶 ∈ ( dom 𝐴 ∖ dom 𝐵 ) → ∃ 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ( 1st ‘ 𝑥 ) = 𝐶 ) ) |
| 4 |
|
eldif |
⊢ ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) ) |
| 5 |
|
1stdm |
⊢ ( ( Rel 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 1st ‘ 𝑥 ) ∈ dom 𝐴 ) |
| 6 |
5
|
ex |
⊢ ( Rel 𝐴 → ( 𝑥 ∈ 𝐴 → ( 1st ‘ 𝑥 ) ∈ dom 𝐴 ) ) |
| 7 |
1 6
|
syl |
⊢ ( Fun 𝐴 → ( 𝑥 ∈ 𝐴 → ( 1st ‘ 𝑥 ) ∈ dom 𝐴 ) ) |
| 8 |
7
|
adantr |
⊢ ( ( Fun 𝐴 ∧ 𝐵 ⊆ 𝐴 ) → ( 𝑥 ∈ 𝐴 → ( 1st ‘ 𝑥 ) ∈ dom 𝐴 ) ) |
| 9 |
8
|
com12 |
⊢ ( 𝑥 ∈ 𝐴 → ( ( Fun 𝐴 ∧ 𝐵 ⊆ 𝐴 ) → ( 1st ‘ 𝑥 ) ∈ dom 𝐴 ) ) |
| 10 |
9
|
adantr |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) → ( ( Fun 𝐴 ∧ 𝐵 ⊆ 𝐴 ) → ( 1st ‘ 𝑥 ) ∈ dom 𝐴 ) ) |
| 11 |
10
|
impcom |
⊢ ( ( ( Fun 𝐴 ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) ) → ( 1st ‘ 𝑥 ) ∈ dom 𝐴 ) |
| 12 |
|
funelss |
⊢ ( ( Fun 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( ( 1st ‘ 𝑥 ) ∈ dom 𝐵 → 𝑥 ∈ 𝐵 ) ) |
| 13 |
12
|
3expa |
⊢ ( ( ( Fun 𝐴 ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 1st ‘ 𝑥 ) ∈ dom 𝐵 → 𝑥 ∈ 𝐵 ) ) |
| 14 |
13
|
con3d |
⊢ ( ( ( Fun 𝐴 ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → ( ¬ 𝑥 ∈ 𝐵 → ¬ ( 1st ‘ 𝑥 ) ∈ dom 𝐵 ) ) |
| 15 |
14
|
impr |
⊢ ( ( ( Fun 𝐴 ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) ) → ¬ ( 1st ‘ 𝑥 ) ∈ dom 𝐵 ) |
| 16 |
11 15
|
eldifd |
⊢ ( ( ( Fun 𝐴 ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) ) → ( 1st ‘ 𝑥 ) ∈ ( dom 𝐴 ∖ dom 𝐵 ) ) |
| 17 |
16
|
3adant3 |
⊢ ( ( ( Fun 𝐴 ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) ∧ ( 1st ‘ 𝑥 ) = 𝐶 ) → ( 1st ‘ 𝑥 ) ∈ ( dom 𝐴 ∖ dom 𝐵 ) ) |
| 18 |
|
eleq1 |
⊢ ( ( 1st ‘ 𝑥 ) = 𝐶 → ( ( 1st ‘ 𝑥 ) ∈ ( dom 𝐴 ∖ dom 𝐵 ) ↔ 𝐶 ∈ ( dom 𝐴 ∖ dom 𝐵 ) ) ) |
| 19 |
18
|
3ad2ant3 |
⊢ ( ( ( Fun 𝐴 ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) ∧ ( 1st ‘ 𝑥 ) = 𝐶 ) → ( ( 1st ‘ 𝑥 ) ∈ ( dom 𝐴 ∖ dom 𝐵 ) ↔ 𝐶 ∈ ( dom 𝐴 ∖ dom 𝐵 ) ) ) |
| 20 |
17 19
|
mpbid |
⊢ ( ( ( Fun 𝐴 ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) ∧ ( 1st ‘ 𝑥 ) = 𝐶 ) → 𝐶 ∈ ( dom 𝐴 ∖ dom 𝐵 ) ) |
| 21 |
20
|
3exp |
⊢ ( ( Fun 𝐴 ∧ 𝐵 ⊆ 𝐴 ) → ( ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) → ( ( 1st ‘ 𝑥 ) = 𝐶 → 𝐶 ∈ ( dom 𝐴 ∖ dom 𝐵 ) ) ) ) |
| 22 |
4 21
|
biimtrid |
⊢ ( ( Fun 𝐴 ∧ 𝐵 ⊆ 𝐴 ) → ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) → ( ( 1st ‘ 𝑥 ) = 𝐶 → 𝐶 ∈ ( dom 𝐴 ∖ dom 𝐵 ) ) ) ) |
| 23 |
22
|
rexlimdv |
⊢ ( ( Fun 𝐴 ∧ 𝐵 ⊆ 𝐴 ) → ( ∃ 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ( 1st ‘ 𝑥 ) = 𝐶 → 𝐶 ∈ ( dom 𝐴 ∖ dom 𝐵 ) ) ) |
| 24 |
3 23
|
impbid |
⊢ ( ( Fun 𝐴 ∧ 𝐵 ⊆ 𝐴 ) → ( 𝐶 ∈ ( dom 𝐴 ∖ dom 𝐵 ) ↔ ∃ 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ( 1st ‘ 𝑥 ) = 𝐶 ) ) |