Metamath Proof Explorer


Theorem gbeeven

Description: An even Goldbach number is even. (Contributed by AV, 25-Jul-2020)

Ref Expression
Assertion gbeeven ( 𝑍 ∈ GoldbachEven → 𝑍 ∈ Even )

Proof

Step Hyp Ref Expression
1 isgbe ( 𝑍 ∈ GoldbachEven ↔ ( 𝑍 ∈ Even ∧ ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑍 = ( 𝑝 + 𝑞 ) ) ) )
2 1 simplbi ( 𝑍 ∈ GoldbachEven → 𝑍 ∈ Even )