| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gcdle1d.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
| 2 |
|
gcdle1d.n |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 3 |
1
|
nnzd |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 4 |
|
gcddvds |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 gcd 𝑁 ) ∥ 𝑀 ∧ ( 𝑀 gcd 𝑁 ) ∥ 𝑁 ) ) |
| 5 |
3 2 4
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑀 gcd 𝑁 ) ∥ 𝑀 ∧ ( 𝑀 gcd 𝑁 ) ∥ 𝑁 ) ) |
| 6 |
5
|
simpld |
⊢ ( 𝜑 → ( 𝑀 gcd 𝑁 ) ∥ 𝑀 ) |
| 7 |
3 2
|
gcdcld |
⊢ ( 𝜑 → ( 𝑀 gcd 𝑁 ) ∈ ℕ0 ) |
| 8 |
7
|
nn0zd |
⊢ ( 𝜑 → ( 𝑀 gcd 𝑁 ) ∈ ℤ ) |
| 9 |
|
dvdsle |
⊢ ( ( ( 𝑀 gcd 𝑁 ) ∈ ℤ ∧ 𝑀 ∈ ℕ ) → ( ( 𝑀 gcd 𝑁 ) ∥ 𝑀 → ( 𝑀 gcd 𝑁 ) ≤ 𝑀 ) ) |
| 10 |
8 1 9
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑀 gcd 𝑁 ) ∥ 𝑀 → ( 𝑀 gcd 𝑁 ) ≤ 𝑀 ) ) |
| 11 |
6 10
|
mpd |
⊢ ( 𝜑 → ( 𝑀 gcd 𝑁 ) ≤ 𝑀 ) |