Step |
Hyp |
Ref |
Expression |
1 |
|
gcdle2d.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
2 |
|
gcdle2d.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
3 |
2
|
nnzd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
4 |
|
gcddvds |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 gcd 𝑁 ) ∥ 𝑀 ∧ ( 𝑀 gcd 𝑁 ) ∥ 𝑁 ) ) |
5 |
1 3 4
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑀 gcd 𝑁 ) ∥ 𝑀 ∧ ( 𝑀 gcd 𝑁 ) ∥ 𝑁 ) ) |
6 |
5
|
simprd |
⊢ ( 𝜑 → ( 𝑀 gcd 𝑁 ) ∥ 𝑁 ) |
7 |
1 3
|
gcdcld |
⊢ ( 𝜑 → ( 𝑀 gcd 𝑁 ) ∈ ℕ0 ) |
8 |
7
|
nn0zd |
⊢ ( 𝜑 → ( 𝑀 gcd 𝑁 ) ∈ ℤ ) |
9 |
|
dvdsle |
⊢ ( ( ( 𝑀 gcd 𝑁 ) ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑀 gcd 𝑁 ) ∥ 𝑁 → ( 𝑀 gcd 𝑁 ) ≤ 𝑁 ) ) |
10 |
8 2 9
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑀 gcd 𝑁 ) ∥ 𝑁 → ( 𝑀 gcd 𝑁 ) ≤ 𝑁 ) ) |
11 |
6 10
|
mpd |
⊢ ( 𝜑 → ( 𝑀 gcd 𝑁 ) ≤ 𝑁 ) |