| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gcdle2d.m | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 2 |  | gcdle2d.n | ⊢ ( 𝜑  →  𝑁  ∈  ℕ ) | 
						
							| 3 | 2 | nnzd | ⊢ ( 𝜑  →  𝑁  ∈  ℤ ) | 
						
							| 4 |  | gcddvds | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( ( 𝑀  gcd  𝑁 )  ∥  𝑀  ∧  ( 𝑀  gcd  𝑁 )  ∥  𝑁 ) ) | 
						
							| 5 | 1 3 4 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝑀  gcd  𝑁 )  ∥  𝑀  ∧  ( 𝑀  gcd  𝑁 )  ∥  𝑁 ) ) | 
						
							| 6 | 5 | simprd | ⊢ ( 𝜑  →  ( 𝑀  gcd  𝑁 )  ∥  𝑁 ) | 
						
							| 7 | 1 3 | gcdcld | ⊢ ( 𝜑  →  ( 𝑀  gcd  𝑁 )  ∈  ℕ0 ) | 
						
							| 8 | 7 | nn0zd | ⊢ ( 𝜑  →  ( 𝑀  gcd  𝑁 )  ∈  ℤ ) | 
						
							| 9 |  | dvdsle | ⊢ ( ( ( 𝑀  gcd  𝑁 )  ∈  ℤ  ∧  𝑁  ∈  ℕ )  →  ( ( 𝑀  gcd  𝑁 )  ∥  𝑁  →  ( 𝑀  gcd  𝑁 )  ≤  𝑁 ) ) | 
						
							| 10 | 8 2 9 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝑀  gcd  𝑁 )  ∥  𝑁  →  ( 𝑀  gcd  𝑁 )  ≤  𝑁 ) ) | 
						
							| 11 | 6 10 | mpd | ⊢ ( 𝜑  →  ( 𝑀  gcd  𝑁 )  ≤  𝑁 ) |