| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gcdle2d.m |
|- ( ph -> M e. ZZ ) |
| 2 |
|
gcdle2d.n |
|- ( ph -> N e. NN ) |
| 3 |
2
|
nnzd |
|- ( ph -> N e. ZZ ) |
| 4 |
|
gcddvds |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M gcd N ) || M /\ ( M gcd N ) || N ) ) |
| 5 |
1 3 4
|
syl2anc |
|- ( ph -> ( ( M gcd N ) || M /\ ( M gcd N ) || N ) ) |
| 6 |
5
|
simprd |
|- ( ph -> ( M gcd N ) || N ) |
| 7 |
1 3
|
gcdcld |
|- ( ph -> ( M gcd N ) e. NN0 ) |
| 8 |
7
|
nn0zd |
|- ( ph -> ( M gcd N ) e. ZZ ) |
| 9 |
|
dvdsle |
|- ( ( ( M gcd N ) e. ZZ /\ N e. NN ) -> ( ( M gcd N ) || N -> ( M gcd N ) <_ N ) ) |
| 10 |
8 2 9
|
syl2anc |
|- ( ph -> ( ( M gcd N ) || N -> ( M gcd N ) <_ N ) ) |
| 11 |
6 10
|
mpd |
|- ( ph -> ( M gcd N ) <_ N ) |