Step |
Hyp |
Ref |
Expression |
1 |
|
gcdle2d.m |
|- ( ph -> M e. ZZ ) |
2 |
|
gcdle2d.n |
|- ( ph -> N e. NN ) |
3 |
2
|
nnzd |
|- ( ph -> N e. ZZ ) |
4 |
|
gcddvds |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M gcd N ) || M /\ ( M gcd N ) || N ) ) |
5 |
1 3 4
|
syl2anc |
|- ( ph -> ( ( M gcd N ) || M /\ ( M gcd N ) || N ) ) |
6 |
5
|
simprd |
|- ( ph -> ( M gcd N ) || N ) |
7 |
1 3
|
gcdcld |
|- ( ph -> ( M gcd N ) e. NN0 ) |
8 |
7
|
nn0zd |
|- ( ph -> ( M gcd N ) e. ZZ ) |
9 |
|
dvdsle |
|- ( ( ( M gcd N ) e. ZZ /\ N e. NN ) -> ( ( M gcd N ) || N -> ( M gcd N ) <_ N ) ) |
10 |
8 2 9
|
syl2anc |
|- ( ph -> ( ( M gcd N ) || N -> ( M gcd N ) <_ N ) ) |
11 |
6 10
|
mpd |
|- ( ph -> ( M gcd N ) <_ N ) |