Metamath Proof Explorer


Theorem gcdle2d

Description: The greatest common divisor of a positive integer and another integer is less than or equal to the positive integer. (Contributed by SN, 25-Aug-2024)

Ref Expression
Hypotheses gcdle2d.m φ M
gcdle2d.n φ N
Assertion gcdle2d φ M gcd N N

Proof

Step Hyp Ref Expression
1 gcdle2d.m φ M
2 gcdle2d.n φ N
3 2 nnzd φ N
4 gcddvds M N M gcd N M M gcd N N
5 1 3 4 syl2anc φ M gcd N M M gcd N N
6 5 simprd φ M gcd N N
7 1 3 gcdcld φ M gcd N 0
8 7 nn0zd φ M gcd N
9 dvdsle M gcd N N M gcd N N M gcd N N
10 8 2 9 syl2anc φ M gcd N N M gcd N N
11 6 10 mpd φ M gcd N N