Metamath Proof Explorer


Theorem gcdle1d

Description: The greatest common divisor of a positive integer and another integer is less than or equal to the positive integer. (Contributed by SN, 25-Aug-2024)

Ref Expression
Hypotheses gcdle1d.m φ M
gcdle1d.n φ N
Assertion gcdle1d φ M gcd N M

Proof

Step Hyp Ref Expression
1 gcdle1d.m φ M
2 gcdle1d.n φ N
3 1 nnzd φ M
4 gcddvds M N M gcd N M M gcd N N
5 3 2 4 syl2anc φ M gcd N M M gcd N N
6 5 simpld φ M gcd N M
7 3 2 gcdcld φ M gcd N 0
8 7 nn0zd φ M gcd N
9 dvdsle M gcd N M M gcd N M M gcd N M
10 8 1 9 syl2anc φ M gcd N M M gcd N M
11 6 10 mpd φ M gcd N M