| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							gchdju1 | 
							⊢ ( ( 𝐴  ∈  GCH  ∧  ¬  𝐴  ∈  Fin )  →  ( 𝐴  ⊔  1o )  ≈  𝐴 )  | 
						
						
							| 2 | 
							
								1
							 | 
							ensymd | 
							⊢ ( ( 𝐴  ∈  GCH  ∧  ¬  𝐴  ∈  Fin )  →  𝐴  ≈  ( 𝐴  ⊔  1o ) )  | 
						
						
							| 3 | 
							
								
							 | 
							isfin4-2 | 
							⊢ ( 𝐴  ∈  GCH  →  ( 𝐴  ∈  FinIV  ↔  ¬  ω  ≼  𝐴 ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							adantr | 
							⊢ ( ( 𝐴  ∈  GCH  ∧  ¬  𝐴  ∈  Fin )  →  ( 𝐴  ∈  FinIV  ↔  ¬  ω  ≼  𝐴 ) )  | 
						
						
							| 5 | 
							
								
							 | 
							isfin4p1 | 
							⊢ ( 𝐴  ∈  FinIV  ↔  𝐴  ≺  ( 𝐴  ⊔  1o ) )  | 
						
						
							| 6 | 
							
								
							 | 
							sdomnen | 
							⊢ ( 𝐴  ≺  ( 𝐴  ⊔  1o )  →  ¬  𝐴  ≈  ( 𝐴  ⊔  1o ) )  | 
						
						
							| 7 | 
							
								5 6
							 | 
							sylbi | 
							⊢ ( 𝐴  ∈  FinIV  →  ¬  𝐴  ≈  ( 𝐴  ⊔  1o ) )  | 
						
						
							| 8 | 
							
								4 7
							 | 
							biimtrrdi | 
							⊢ ( ( 𝐴  ∈  GCH  ∧  ¬  𝐴  ∈  Fin )  →  ( ¬  ω  ≼  𝐴  →  ¬  𝐴  ≈  ( 𝐴  ⊔  1o ) ) )  | 
						
						
							| 9 | 
							
								2 8
							 | 
							mt4d | 
							⊢ ( ( 𝐴  ∈  GCH  ∧  ¬  𝐴  ∈  Fin )  →  ω  ≼  𝐴 )  |